
www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may be

from any type o f computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely afreet reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back o f the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Information Company

300 North Zed) Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Submitted In Partial Fulfillment of the
Requirements for the Degree:

Doctor of Philosophy
In

Software Engineering
With

Areas of Specialization In
Project and Quality Management

and Curriculum Development

The Union Institute Doctoral

Project Demonstrating Excellence

“Software Engineering Academic
Project Management Production Tools

(C-ProMPT)”

Core Faculty Advisor: Benjamin R. H. Davis, Ph.D.

Submitted By: Gregory E. Russell

Submitted To: The Graduate School of The Union Institute,
Cincinnati, Ohio

February 10,1996

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

UMI Number: 9623656

UMI Microform 9623656
Copyright 1996, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Project Demonstrating Excellence H Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Project Demonstrating Excellence consists o f two parts. The first part

includes a personal computer software application and accompanying on-line user guides.

The second part is a contextual piece that contains a review of the relevant scholarly

software engineering literature, software academic issues, and the development

methodologies and issues involved with the software application development.

The software application was designed and developed to demonstrate a computer

science and software engineering academic project management tool that is easy to use

and provides consistent coding and document standards and principles. The system is

called “Software Engineering Academic Project Management Production Tools” or “C-

ProMPT.” It includes the following modules: Personal Software Processes (process

management) tools, forms, and guidelines; detailed C and C++ coding standards;

academically proven software engineering document standards; document standard

templates; document design guidelines; and other software engineering topics (software

design, unit testing, risk management, and quality improvement). The system design

incorporates object-oriented and event-oriented programming using a modified fourth-

generation computer language and human-computer interaction principles.

The software is a Microsoft Windows application that interfaces completely with

the Windows environment. Included in the application is extensive on-line context-

sensitive help. A small users’ guide is included to provide installation and tutorial

instructions.

The contextual piece is organized into three sections. The first section reviews the

relevant software engineering scholarly literature. This review includes a sub-section

discussing the complexities involved with the software engineering field and another sub

section discussing the acceptance of the software engineering field in academia. The

second section describes the software engineering methods used to develop the software

application. The last section reflects on the student and software practitioner

human/computer interaction review of the software application.

Gregory E. Russell Ml Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Project Demonstrating Excellence iv Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table of Contents

Abstract... iii

1. Review of the Current Literature.. . 1
Software Engineering As A Discipline... 1

Introduction.. 1

Benevolent Odious Software.. 7

Evolution o f Computers..11

Computer development... 11

Programming Language Development.. 13

Time Line, Reader’s Digest Version.. 15

Evolution o f Software Engineering Methods.. 18
Structured Methods... 20

Object-Oriented Methods... 29

Software Complexity and R isk..36

Software Development Management.. 48

Organizational Evolution... 78

“To Go Where No One Has Gone Before” ... 89

Software Engineering In Academia.. 98

Evolution o f CS/SE Degree Programs.. 98

Software Engineering Research and Publications..104

Nature of Software Engineering Courses.. 111

Curriculum Analysis... 114

Conclusion.. 131

Sample Academic Software Engineering Products..132

2. The Software Development Process... 134
Why C-ProMPT?... 134

History.. 135

Requirements... 137

Software... 137

Software Engineering Document Standards... 137

C and C++ Programming Language Coding Standards..138

Document Design Guide...140
Automated Software Engineering Document Templates.................................... 140

Software Estimation T ool...141

User Interface...142

Gregory E. Russell V Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table of Contents

Production Tools...144

Design.. 145

Rapid Prototype Design and Development..................... 145

Graphic User Interface Design...146
Help Screen Icons...150

Guidelines and standards.. 150

Coding Guidelines and Standards..153

Document standards..154
Document standard templates.. 156

Software Engineering Special Topics... 156

Software Development..156

Software Engineering References..157

Personal and Organization... 157

Document Cost and Effort Estimation.. 158

Stand-alone C-ProMPT Help Files... 161

Construction..161
Support Documentation... 161

C-ProMPT Help Files Conversion...161

C-ProMPT Software Application...164

Testing... 166

Unit Tests.. 166

Problems:..167

System Tests..167

Usability Tests...167
Future Enhancements... 167

3. Software Usability Testing...170
C-ProMPT Evaluators..170

Evaluator Selection Rational... 171

Human-Computer Interaction Evaluation Forms...172

User-Interaction Satisfaction Results..173
Type of Systems Used By the Evaluators...173

Evaluators’ Past Experience...173

Screen.. 174

Terminology and System Information..175

Learning.. 176

System Capabilities.. 177

Overall User Reactions.. 179

Project Demonstrating Excellence Vi Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table of Contents

Evaluators’ Comments..179

4. Bibliography..182

Gregory E. Russell Vii Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

^^m rnhm m m m m m m m m m M ^^A

Software Engineering As A Discipline

Introduction

This section begins with a discussion of the history of computer software

development and the several definitions of Software Engineering. This is followed by a

story of a software error that caused six deaths in the 1980s. This leads to a discussion on

computer and software development, software development methods, complexity and

risk. The last section discusses software process improvement and how this quality

management practice is providing credibility to software developers and the software

engineering field.

What is Software Engineering? Is Software Engineering a computer science

specialty? Is a software engineer a super programmer?

The software engineering discipline evolved over the past two decades from a

computer programming concept to a recognized engineering discipline.

There are many definitions of Software Engineering. Each definition produces a

slightly different graduate software engineering program. Ian Sommerville defined

software engineering as [Sommerville92]:

... a number of possible definitions of software engineering. Their common

factors are that software engineering is concerned with software systems built

by teams rather than by individuals, uses engineering principles in the

development of these systems and includes both technical and non-technical

aspects. As well as having a thorough knowledge of computing techniques,

software engineers must be able to communicate orally and in writing. They

should be aware of the importance of project management and should

appreciate the problems system users may have in interacting with software

whose workings they may not understand.

Gregory E. Russell 1 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Software does not simply mean the computer programs associated with some

application or product. As well as programs, 'software' includes the

documentation necessary to install, use, develop and maintain these programs.

For large systems, the effort needed to write this documentation is often as

great as the required for program development.

Tom Gilb said that a software engineer is [Gilb88]:

... not a programmer

A design engineer, with software as a major discipline and probably at least

one specialty discipline.

The software engineer can translate cost and quality requirements into a set of

solutions to reach the planned levels.

Specialty examples: reliability engineer, maintainability, portability, human

factors, quality control, general architecture.

Richard Fairley, another software engineering expert defined software engineering

in this way [Fairley85]:

Software engineering is the technological and managerial discipline concerned

with systematic production and maintenance of software products that are

developed and modified on time and within cost estimates.

Finally, Stephen Schach stated that [Schach93]:

Software Engineering is a discipline whose aim is the production of quality

software, delivered on time, within budget, and that satisfies the user's needs.

In order to achieve this goal, a software engineer has to acquire a broad range

of skills, both technical and managerial. These skills have to be applied not

just to programming but to every phase of software production, from

requirements to maintenance.

Another world renown expert, James Martin, created a term to describe another

type of software engineering discipline, the information engineer. This expert comes from

Project Demonstrating Excellence 2 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

an information system background. The information engineer is someone who looks at

the whole business situation (enterprise-wide) and determines how a specific project, and

well as other projects, solve enterprise-wide problems. He defined information

engineering as the [Martin89]:

Information engineering is defined as the application o f an interlocking set of

formal techniques for the planning, analysis, design, and construction of

information systems on an enterprise-wide basis or across a major sector of

the enterprise.

James Martin also stated in the same text:

Software engineering applies structured[, real-time, and object-oriented]

techniques to one project. Information engineering applies structured[, real

time, and object-oriented] techniques to the enterprise as a whole, or to a large

sector of the enterprise. The techniques of information engineering encompass

those of software engineering in a modified form.

Because an enterprise is so complex, planning, analysis, design, and

construction cannot be achieved on an enterprise-wide basis without

automated tools. Information engineering has been defined with reference to

automated techniques as follows:

• An Interlocking set of automated techniques in which enterprise

models, data models, and process models are built up in a

comprehensive knowledge base and are used to create and maintain

data processing systems.

Information engineering sometimes been described as

• An organization-wide set of automated disciplines for getting the right

information to the right people at the right time.

These four individuals correctly identified the role of the software engineer. James

Martin may disagree, but I think the software engineer is extremely interested in joint

Gregory E. Russell 3 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

projects, especially if this individual is a division software project manager dealing with

several subcontractors working joint projects.

As a software engineer with many years of experience and almost three years of

Ph.D. studies, I know that a softare engineer is more than the definitions provided by the

above experts. The definition that fully defines software engineering is provided by

Daniel M. Berry [Berry92]:

1. Software engineering is that form of engineering that applies:

• a systematic, disciplined, quantifiable approach,

• the principles of computer science, design, engineering, management,

mathematics, psychology, sociology, and other disciplines as

necessary,

• and sometimes just plain invention,

to creating, developing, operating, and maintaining cost-effective, reliably

correct, high-quality solutions to software problems.

2. Software engineering is also the study of and search for approaches for

carrying out the activities of (1) above.

In the interest of briefer sentences in the sequel, the phrase “quality software”

means cost effective, reliably correct, high-quality solutions to software

problems. Since cost effectiveness includes performance, “quality software”

also means software that is performing adequately for its purpose. The word

“producing” means creating, developing, operating, and maintaining; and

“underlying principles” means principles of computer science, design,

engineering, management, mathematics, psychology, sociology, and other

disciplines as necessary.

The concept of software engineering was first envisioned almost thirty years ago.

Dr. Stephen Schach discussed the first conference dedicated to software engineering

[Schach93]:

Project Demonstrating Excellence 4 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

In the belief that software design, implementation, and maintenance could be

put on the same footing as traditional engineering disciplines, a NATO study

group in 1967 coined the term “software engineering.” The claim that building

software is similar to other engineering tasks was endorsed by the 1968

NATO Software Engineering Conference held in Garmisch, Germany. (This

<*ndnrsemer.t is not very surprising; the very name of the conference reflected

the belief that software production should be an engineering-like activity.) A

conclusion of the conferees was that software engineering should use the

philosophies and paradigms of established engineering disciplines, and that

this would solve what they termed the software crisis, namely, that the quality

of software was generally unacceptably low and that deadlines and cost limits

were not being met.

The software crisis term is refered to in many software engineering text books and

articles. Dr. Roger Pressman described the term in this manner [Pressman92]:

Many industry observers (including this author in earlier editions of this book)

have characterized the problems associated with software development as a

“crisis.” Yet, what we really have may be something rather different.

The word “crisis” is defined in Webster's Dictionary as “a turning point in the

course of anything; decisive or crucial time, stage or event.” Yet, for software

there has been no “turning point,” no “decisive time,” only slow, evolutionary

change. In the software industry, we have had a “crisis” that has been with us

for close to 30 years, and that is a contradiction in terms.

Anyone who looks up the word “crisis” in the dictionary will find another

definition: “the turning point in the course of a disease, when it becomes clear

whether the patient will live or die.” This definition may give us a clue about

the real nature of the problems that have plagued software development.

We have yet to reach the stage of crisis in computer software. What we really

have is a chronic afflictions (This terminology was suggested by Professor

Gregory E. Russell 5 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Daniel Tiechrow o f the University of Michigan in a talk presented in Geneva,

Switzerland, April 1989). The word “affliction” is defined in Webster's as

“anything causing pain or distress.” But it is the definition of the adjective

“chronic” that is the key to our argument: “lasting a long time or recurring

often; continuing indefinitely.” It is far more accurate to describe what we

have endured for the past three decades as a chronic affliction rather than a

crisis. There are no miracle cures, but there are many ways that we can reduce

the pain as we strive to discover a cure.

Whether we call it a software crisis or a software affliction, the term alludes to

a set of problems that are encountered in the development of computer

software. The problems are not limited to software that “doesn't function

properly.” Rather, the affliction encompasses problems associated with how

we develop software, how we maintain a growing volume of existing

software, and how we can expect to keep pace with a growing demand for

more software. Although reference to a crisis or even an affliction can be

criticized for being melodramatic, the phrases do serve a useful purpose by

encompassing real problems that are encountered in all areas of software

development.

This afflication is not rare in the software development industry. Unfortunately, it

is common. It is so common that the normal software manager and software practitioner

accept the afflication as part o f the business. In other words, these individuals do

recognize the symptoms that may cause their software products to destroy businesses and

human lifes.

Before I continue with the computer and software evolution discourse, it is

imperative that the reader understand hazards associated with this afflication. The

following story will help the reader understand the afflication better.

Project Demonstrating Excellence 6 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Benevolent Odious Software

While attending the Software Engineering Institute’s 4th Annual Conference on

Risk, I talked with one o f the nation’s renown experts on software risk, Dr. Peter

Neumann, Stanford Research Institute. We talked about why organizations were having

such a hard time accepting risk analysis and management principles in their software

development practices. There were many reasons, but the predominate one was a

misundertanding of risk itself. He said that companies perfer to manage problems,

“putting out fires,” rather than “fire prevention.” People are promoted for putting out

fires; those that practice fire prevention are not as visible. He also told me about an X-ray

machine that killed six people because the manufacturer was more concerned about

“putting out fires.” This story appears in Ivars Peterson’s book Fatal Defect [Peterson95].

Everything appeared normal on the morning of March 21,1986, when Ray

Cox returned to the East Texas Cancer Center in Tyler to receive treatment for

a tumor in his upper back. Several months earlier, doctors had removed a

cancerous growth from this region of the thirty-three-year-old oil field

worker's body, and the patient was now nearing the end of a regimen of

therapeutic radiation treatments. Cox lay facedown on a table beneath the arm

of a high-tech radiation therapy machine known as the Therac-25. Eight

previous treatments had taught Cox that it was a painless procedure, no more

disturbing than sitting for a photograph.

This time, however, Cox experienced a sharp jolt, a sensation resembling a

strong electrical shock. At the same instant it shot through his body, he heard

an unfamiliar buzzing sound from the equipment. His back felt as if someone

had accidentally spilled a cup of scalding hot coffee over it. Alone in the

radiation-therapy room, he started to pull himself from the treatment table. But

just as he was getting up, a second burst struck his arm. Cox later recalled that

it felt as if his arm had suffered an electrical shock and that his hand were

leaving his body. Seeking help, he tumbled off the table, staggered across the

room, and began pounding on the door.

Gregory E. Russell 7 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Outside the room's seven-foot-thick concrete walls, the technician operating

the computer-controlled radiation machine hadn't seen Cox's reaction. On this

particular day, the room's video monitor was disconnected and the intercom

wasn't working. The only indication that anything might be amiss was a

cryptic message — “malfunction 54” — that had appeared twice on the

computer display outside the treatment room. Hearing the pounding, the

operator immediately opened the door. She was shocked to find a shaken and

injured Cox.

Cox was immediately taken to a nurse's station, where a physician examined

him. Cox feared that he had suffered a radiation overdose, but the Therac-25's

computer display suggested, if anything, that an underdose had occurred.

Showing reddened skin in the treatment area but no obvious signs of serious

injury, Cox was sent home. The clinic’s staff checked the machine but failed

to uncover any problems. The Therac-25 went back into service the same day

and successfully completed its schedule of treatments.

That night, finding the pain in his neck and shoulder worsening, Cox checked

into a hospital emergency room. A disfiguring mass had developed under the

skin on his back, and doctors suspected that he had suffered an intense

electrical jolt. When the cancer clinic was notified of this development, there

was sufficient concern about a possible electrical or radiation problem that

clinic personnel shut the machine down for testing. But they couldn't

reproduce the conditions that had led to malfunction 54. According to the

manufacturer's manual, this particular error message meant that the machine

had delivered either an underdose or an overdose of radiation, but there was

no clear evidence this had happened. After an independent engineering report

vouched for the machine's electrical safety, the clinic returned its Therac-25 to

service on April 7.

On April 11, malfunction 54 surfaced again at the Tyler clinic, with the same

machine and the same technician. The victim was sixty-six-year-old bus driver

Project Demonstrating Excellence 8 Gregory E. Russell

j with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Vemon Kidd, who was being treated for a skin cancer on the side of his face.

This time the intercom was working, and the operator heard a loud noise and

immediately rushed into the treatment room, where she found the patient

moaning for help. Kidd had seen a brilliant flash of light, and he had heard an

accompanying sizzling sound reminiscent of eggs frying. The side of his face

felt as if it were on fire.

Three weeks later, Kidd died. An autopsy revealed a high-dose radiation

injury to the right lobe o f his brain and brain stem. Meanwhile, Cox lost the

use of his left arm and experienced periodic bouts of nausea and vomiting. He

was eventually hospitalized for radiation-induced damage to his spinal chord,

which caused paralysis of both legs and other complications. He died in

September.

Mr. Peterson continues with a description of the faulty machine and the intial

investigation:

The machine at fault was the Therac-25 linear accelerator, a sophisticated,

powerful device designed to fire a penetrating, high-energy beam of radiation

deep into a patient's body to destroy embedded cancerous cells without

injuring the surrounding tissue. From a port in its bulky, cantilevered arm, the

Therac-25 could deliver radiation in two forms: either as a beam of electrons

or as a beam of X rays. The accelerator produced the highly penetrating X rays

by slamming a stream of high-energy electrons into a metal target. In the

electron-producing mode, the machine would automatically move the metal

target, decrease the electron beam's energy level, and send the beam directly to

the tumor. Because a low-energy electron beam has less penetrating power

than an X-ray beam, physicians use it to treat superficial cancers near the skin.

The crucial element in the machine's design was a turntable that carried the

devices which modified the electron beam for a particular form of radiation

treatment into position. At the first setting, high-energy electrons struck a

metal target to produce X rays; in the second position, scanning magnets

Gregory E. Russell 9 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

spread out the electron beam to a safe concentration for direct, electron-beam

treatments; and in the third position, a mirror interrupted the electron beam

path and a source of visible light illuminated the patient's body so the

technician could aim it correctly. Three microswitches attached to the

turntable monitored its position, and signals from these switches told the

Therac-25's computer where the turntable was at any moment.

Initially the manufacture could not find the problem. Only after a clinic physicist

at Taylor, Dr. Fritz Hager, discovered that an experienced operator could enter

operational parameters faster than the machine could accept the entries. If the operator

accidently entered a “X” for X-ray then corrected the mistake the machine would not

detect the error or change. It took about six seconds for the machine to change from X-ray

to electronic beam. During this time the operator’s entry was not monitored.

An expert computer scienctist, Dr. Nancy G. Leveson, found many problems with

the machine. According to Ivars Peterson [Peterson95]:

The Therac-25's computer program, consisting of about twenty thousand

instructions, had been written by a single programmer over a period of several

years. It incorporated parts [software components] of the Therac-6 and

Therac-20 programs, along with a great deal of new material tailored to the

Therac-25's special features. Curiously, very little information about who this

individual programmer emerged. The employee’s employment records were

not found, and the company employees, who filed depositions, could not

provide information about this person's education, qualifications, or

experience. It is known that this programmer left the company in 1986.

Leveson and others who had a chance to examine the software were appalled

by the mess they found. There was very little documentation — nothing

written out to explain in plain English what different parts of the program did.

There was no analysis demonstrating that key strings of instructions led to

appropriately timed actions. There was no evidence that the software itself had

been extensively tested before being bundled with the machine. The whole

Project Demonstrating Excellence 1 0 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

package displayed shoddy, naive programming, but unfortunately, it typified

the informal, undisciplined approach taken by many software developers in

the 1970s.

Although Mr. Peterson’s statement about software development in the 1970s is

true, the implication that software developers have changed their software development

methods in the 1980s and 1990s is not true. Software developers are still “hacking” code

for mission-critical and life-critical software. This is the “software crisis” that so many

software engineering experts are trying to overcome. Albeit, Dr. Pressman’s statement is

more to the point, this is a software affliction.

Why did this affliction occur? To the software user, the software, in most cases, is

very simple to use. Most users feel, that if it is simple to use, it must be simple to

develop. Software development is like a recent lava flow. At the surface it is nice and

clean. You can walk on the surface if you are careful and don’t mind the heat. However,

below the surface the lava is still reeling and churning, trying desperately to break the

surface shell. On the surface, software is nice and easy to use. Underneath the surface is a

complex mixture of algorithms, logic, and heuristics that are barely in check. One

missing bit could bring the entire surface crashing down upon the complex inner

workings. It is this rapidly increasing complexity that is part of the software affliction.

Evolution of Computers

Computer development

The first computer systems and the programs that instructed the computers were

very simple. Computer Science and computer scientist were unheard of. The computer

science field was just starting to mature. As with any organism, this change from child to

adult is very difficult. The computer science field is about sixty years old, and the

software engineering field about thirty years old. As compared with other engineering

fields these two fields are extremely new and in some cases, for example, construction

engineering, these fields could be considered still in the embryonic stage. When did

Gregory E. Russell 1 1 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

computers and software come into existence? According to Michael B. Feldman and

Elliot B. Koffman the true digital computer age began [Feldman93]:

... In the late 1930s by Dr. John Atanasoff at Iowa State University. Atanasoff

designed his computer to perform mathematical computations for graduate

students.

The first large-scale, general-purpose electronic digital computer, called the

ENIAC (Electronic Numeric Integrator And Computer), was built in 1946 at

the University of Pennsylvania. Its design was funded by the U.S. Army, and

it was used to compute ballistics tables, predict the weather, and make atomic

energy calculations. The ENIAC weighed 30 tons and occupied a 30-by-50-

foot space.

Although we are often led to believe otherwise, computers cannot reason as

we do. Basically, computers are devices that perform computations at

incredible speeds (more than one million operations per second) and with

great accuracy. However, to accomplish anything useful, a computer must be

programmed, that is, given a sequence of explicit instructions (a program) to

perform.

To program the ENIAC, engineers had to connect hundreds of wires and

arrange thousands of switches in a certain way. In 1946 Dr. John von

Neumann, of Princeton University, proposed the concept of a stored-program

computer: a program stored in computer memory rather than set by wires and

switches. Von Neumann knew programmers could easily change the contents

o f computer memory, so he reasoned that the stored-program concept would

greatly simplify programming a computer. Von Neumann's design was a

success and is the basis of the digital computer as we know it today.

Computers developed from 1939 to now evolved through four stages. Computer

scientists often use the term “first generation” to refer to electronic computers that used

vacuum tubes (1939 - 1958), The second generation began in 1958 with the changeover

Project Demonstrating Excellence 1 2 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

to transistors. The third generation began in 1964 with the introduction of integrated

circuits. The fourth generation began in 1975 with the advent of large-scale integrated

circuits. Since then, change has come so rapidly, between six to 18 months, that computer

scientist don’t seem to be counting generations anymore.

Programming Language Development

Initially mathematicians and then computer scientists developed most of the

programming languages used from the 1940s to now. Programming languages have gone

through a similar evolutionary track as computer hardware. Since 1939 various research

groups, international committees and computer companies designed over a thousand

different programming languages. Most of these languages have never been used outside

the group which designed them; while others, once popular, have been replaced by newer

languages.

The first generation languages were based on the structures of the computers of

the early 1960s. These languages were machine oriented and had linear data structures.

The second generation languages incorporated hierarchically nested data

structures, block structures, structured control features, built in types, syntactic structures.

These languages provided the capability to develop very complex systems as compared

with the first generation languages.

The third generation languages incorporated user defined data types, the ability to

nest data structures to any depth, records and enumeration types, and efficient control

structures, case or switch statement.

The fourth generation languages (4GL’s) are languages that were developed as

result of the dissatisfaction of business users with large conventional languages like

COBOL.

Most 4GL’s are produced for a particular computer or range of computers, and the

distinction between a language and a package is not always clear. These packages include

but are not all inclusive:

Gregory E. Russell 1 3 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Report Program Generator (RPG)

This was probably the first 4GL and was produced in the 1960s in

response to customer requests for a simple language for the generation of

reports.

Application Generators

These 4GL’s generate solutions for routine applications. Typical

operations include data entry, ideally with full checking, and updating of

files and databases. Examples are Borland’s Delphi and Microsoft’s Visual

Basic.

Query Languages

These 4GL’s are used with databases and allow the user to ask

questions relating to several fields of the basic data records. More

sophisticated languages in this category also allow the user to update the

database. The most widely used language in this category is SQL.

Decision-Support Languages

The intention of the designers of 4GL’s of this type was to help the

user make informed and therefore better decisions. Such languages, for

example ORACLE and INGRES, provide the user with facilities to build

databases and to then perform statistical calculations, such as an analysis

of trends on the data.

4GLs are currently the most fluid area in programming language design, with new

languages springing up and others withering away through lack of users. What is not

being produced are well-designed and thought-out languages carefully tailored to the

needs o f the customer and which take into account current and future computer hardware.

Project Demonstrating Excellence 14 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Time Line, Reader’s Digest Version

To appreciate the rapid advances in digital computers and programming

languages, Michael B. Feldman and Elliot B. Koffman provided this time line with some

modifications [Feldman93],

Date Event

2000 BC The abacus is first used for computations.

1642 AD Blaise Pascal creates a mechanical adding machine for
tax computations. It is unreliable.

1670 Gottfried von Leibniz creates a more reliable adding
machine that adds, subtracts, multiplies, divides, and
calculates square roots.

1842 Charles Babbage designs an analytical engine to perform
general calculations automatically. Ada Augusta (a.k.a.
Lady Lovelace) is a programmer for this machine.

1890 Herman Hollerith designs a system to record census data.
The information is stored as holes on cards, which are
interpreted by machines with electrical sensors. Hollerith
starts a company that will become IBM.

1939 John Atanasoff, with graduate student Clifford Berry,
designs and builds the first electronic digital computer.
His project was funded by a grant for $650.

1946 J. Presper Eckert and John Mauchly design and build the
ENIAC computer. It uses 18,000 vacuum tubes and costs
$500,000 to build.

1946 John von Neumann proposes that a program be stored in
a computer in the same way that data are stored. His
proposal (called “von Neumann architecture”) is the basis
of modem computers.

1951 Eckert and Mauchly build the first general-purpose
commercial computer, the UNIVAC.

1957 An IBM team led by John Backus designs the first
successful programming language, Fortran, for solving
engineering and science problems.

Gregory E. Russell 1 5 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Date

1958

1958

1958

1960

1964

1964

1964

1965

1969

1971

1972

1975

1975

1976

1977

Event

The first computer to use the transistor as a switching
device, the IBM 7090, is introduced.

Seymour Cray builds the first fully transistorized
computer, the CDC 1604, for Control Data Corporation.

ALGOL 58 programming language developed for
solving business, engineering, and science problems

The Department of Defense publishes the COBOL
programming language specification

The first computer using integrated circuits, the IBM
360, is announced.

John Kemeny and Thoman Kurtz design and implement
the BASIC programming language as a language for
teaching programming languages

An IBM team designs PL/1 programming language, for
solving business, engineering, and science problems.

The CTSS (Compatible Time-Sharing System) operating
system is introduced. It allows several people to use a
single computer simultaneously.

Smalltalk developed by Alan Kay as a Ph.D. dissertation.

Nicklaus Wirth designs the Pascal programming
language as a language for teaching structured
programming concepts.

Dennis Ritchie, Bell Laboratories, designed and
implemented the C programming language

The first microcomputer, the Altair, is introduced.

The first supercomputer, the Cray-1, is announced.

Digital Equipment Corporation introduces its popular
minicomputer, the VAX 11/780.

Steve Wozniak and Steve Jobs found Apple Computer.

Project Demonstrating Excellence 1 6 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Date Event

1978 Dan Bricklin and Bob Frankston develop the first
electronic spreadsheet, called VisiCalc, for the Apple
computer.

1980 Bjame Stroustup, Bell Laboratories, developed C++ (C
with Classes) on top o f C to provide much of what
Smalltalk pioneered.

1981 Microsoft Corporation introduces MS-DOS 1.0

1981 IBM introduces the IBM PC.

1982 Sun Microsystem introduces its first workstation, the Sun
100.

1983 The Department of Defense publishes the Ada
programming language specification. This is the result of
the most extensive and most expensive language design
effort ever launched.

1983 Borland International introduces its first product Turbo
Pascal.

1984 Apple introduces the Macintosh, the first widely
available computer with a “user-friendly” graphical
interface using icons, windows, and a mouse.

1984 Intel releases the 80286 microprocessor

1985 Microsoft Corporation introduces Windows.

1986 Intel introduces the 80386 microprocessor

1988 Intel introduces the 80486 microprocessor

1994 Intel introduces the Pentium microprocessor

1995 Microsoft Corporation introduces Windows 95

This time-line only shows when the initial event occured. It doesn’t show the

rapid improvements of the languages or computer systems. These rapid advances have

driven the conception and birth of Software Engineering.

Gregory E. Russell 17 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Evolution of Software Engineering Methods

Valdis Berzins [Berzins91] states:

Why is Software Engineering important? Software engineering is important

because

1. Software has a large and increasing effect on people's lives, and

2. Software has a large and increasing cost.

Software is needed to enable computers to perform useful tasks. People's lives

are being affected by software in increasingly critical ways as software is

developed to automate many new tasks. Some of the areas being partially

automated include financial services, communications systems, design and

manufacturing operations, management information systems, control of power

generation and distribution systems, medical services, air travel, space

exploration, and weapons systems. Computers can perform tasks that are too

complicated or too time consuming for people to do manually, and they can

often do those tasks faster, at lower cost, and with greater reliability than

people can. As software technology improves, the range of functions that can

be usefully automated will continue to expand. However, computers are useful

only if the software operates correctly and performs the functions needed by

the people using the computers. Most computer system faults are due to

design errors in the software rather than unpredictable behavior of the

hardware.... Developing reliable, useful, and flexible software systems is one

of the great challenges facing software engineers today.

We have already read Dr. Schach’s description of the first Software Engineering

conference. He also made this comment [Schach93]:

The fact that the software crisis is still with us, over 25 years later, should tell

us two things. First, the software production process, while resembling

traditional engineering in some respects, has its own unique properties and

Project Demonstrating Excellence 18 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

problems. Second, the software crisis should rather be termed the software

depression, in view of its long duration and poor prognosis.

It is certainly true that bridges collapse less frequently than operating systems.

Why then cannot bridge-building techniques be used to build operating

systems? What the NATO conferees overlooked is that bridges are as different

from operating systems as ravens are from writing desks.

A major difference lies in the attitudes of the civil engineering community and

the software engineering community to the act o f collapsing. When a bridge

collapses, as the Tacoma Narrows bridge did in 1940, this almost always

means that the bridge has to be redesigned and rebuilt from scratch.

In contrast, when an operating system crashes it may simply be possible to

reboot the system in the hope that the set of circumstances which caused the

crash will not recur. This may be the only thing to do if, as is often the case,

there is no evidence as to the cause of the crash. The damage caused by the

crash will usually be minor: a database partially corrupted, a few files lost.

Even when damage to the file system is considerable, by using back-up data

the file system can often be restored to a state not too far removed from the

state it was in just before the crash occurred.

Now consider a real-time system, that is, a system which has to be able to

respond to inputs from the real world as fast as they occur.. For most real-time

systems... there is usually some element of fault tolerance built into the

system to minimize the effects of a crash. That is to say, the system is

designed in such a way that, if the system fails, an attempt is automatically

made to recover from the failure.

The very concept of fault tolerance highlights a major difference between

bridges and operating systems.... Bridges are assumed to be perfectly

engineered; operating systems are assumed to be imperfectly engineered. This

Gregory E. Russell 19 Project Demonstrating Excellence

h with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

fundamental difference is why software cannot be “engineered,” in the

classical sense of the word.

It might be suggested that this difference is only temporary. ... The flaw in

this argument is that hardware, and hence the associated operating system, is

growing faster in complexity than we can handle it. In the 1960s, we had

multiprogramming operating systems, virtual memory was a major

complicating factor of operating systems of the 1970s, and now we are

attempting to come to terms with multiprocessor and distributed (network)

operating systems. Until we can handle the complexity caused by the

interconnections o f the various components of a software product such as an

operating system, we cannot hope to understand it fully, and if we do not

understand it, we cannot hope to engineer it. To make matters worse,

complexity is growing too fast for us to hope to be able to master it.

During the 1970s several “software engineering” experts devised several methods

to reduce the increasing software development complexity. These methods are called

structured methods for software analysis and design.

Structured Methods

During the 1950s and 1960s software development was very simple. Time shared

systems were none existent in the 1950s and just started to show up in the mid-1960s.

Prior to time shared systems, the computer systems were essentially personal computers.

Only one programmer could operate the system at any given time. A programmer would

write a routine; run it on the computer to see if it worked; incorporate the routine if it

worked or rework the routine if it didn’t. This is similar to programming on our current

personal computers. As time shared computer systems started to make their way into

business, engineering, and military establishments, more and more programmers could

program the computer at any given time. Along with the computer system’s increased

capacity, the creation of software become more complex. More and more software

Project Demonstrating Excellence 20 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

development efforts were failing due to being over budget and not on schedule.

Something had to be done to reduce the complexity.

Lem Ejiogu [Ejiogu91] describes the “structured revolution” that occurred as a

result o f the increase software development complexity:

The structured revolution was bom out of common dissatisfaction with the

then technical know-how of developing computing systems and the

consequent disquieting problems of productivity. Essentially, there was

general lack of formal principles for thinking, planning, designing, and testing

software systems. These critical problems can be summed up as:

• Poor managerial control

• Poor verifiability

• Poor modifiability

• Poor adaptability

• Poor maintainability

• Poor testability

• Poor reliability

• Late deliverability

• Skyrocketing costs of development and maintenance

• Inadequate education for professionals

These problems, indirectly at least, motivated the creation of the term software

engineering. In one respect, they are an indictment of poor management; in

another, they reveal the absence of adequate principles on the part of many

practitioners who simply did not exercise well their powers of intellectual

management of complexity. However, human manageability and education

were not really to blame. The times were to blame. The computer revolution

descended on us with an avalanche of problems beyond our known levels of

Gregory E. Russell 21 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

functionality. But it is gratifying to note that man has rebounded with a good

measure of resilience. Given the rapid deployment o f computer technology by

industry and science within so narrow a period of human history, it cannot be

refuted that the revolution has been intelligently channeled to creative

productivity.

This revolution created the first generation o f software methodologies. These

methods were generally developed between the late 1960s and mid-1970s. Only a hand-

full of software development organizations were innovated enough to incorporate the

methods into their software development practices.

Ed Yourdon [Yourdon93] provides an overview of the three structured methods,

programming, analysis, and design. He described the first generation methods as:

The evolution of system development methods has been gradual, with many

people contributing to their improvement. The [first generation methods are

identified]:

... with the various Structured techniques' developed during the late 1960s

and 1970s. Structured techniques break down a complex problem into

smaller components, with well defined inter-relationships between the

components. [These components include:]

• Structured programming

• Sequence, selection, iteration and avoiding ‘GOTOs’

• Modular design and structure charts

• Programming style

• Data structures

• Structured design

• Successive refinement

• Abstraction

Project Demonstrating Excellence 22 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

• Techniques based on the semantics o f the structure

chart

• Data refinement techniques

• Structured Analysis

• Data flow diagrams

• Top-down functional decomposition

• Avoiding technological bias

• Information modeling

The total concept of structured methods, programming and software development

methods, consisted of breaking down, decomposing, the problem steps into smaller steps

until the steps cannot be broken down any further. The fundamental concepts of the first

generation software engineering methods were not new; they were derived from many

diverse sources, including engineering, hierarchy theory, Structured Programming, and

even human psychology. [Page-Jones88]

In 1978 Tom DeMarco recommended several changes to the current analysis

techniques used by the software industry. What is amazing about these recommendations

is that they sound very similar to object-oriented techniques. This is what Tom DeMarco

[DeMarco79] wrote in 1979:

I suggest we need to make the following additions to our set of analysis phase

goals:

• Problems of size must be dealt with using an effective method of

partitioning.

• Graphics have to be used wherever possible.

• We have to differentiate between logical and physical considerations,

and allocate responsibility, based on this differentiation, between the

analyst and the user.

Gregory E. Russell 23 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

• We have to build a logical system model so the user can gain

familiarity with system characteristics before implementation.

At the very least, we require three types of new analysis phase tools:

• Something to help us partition our requirement and document that

partitioning before specification. For this I propose we use a Data

Flow Diagram.

• Some means o f keeping track of and evaluating interfaces without

becoming unduly physical. Whatever method we select, it has to be

able to deal with an enormous flood of detail — the more we partition,

the more interfaces we have to expect. For our interface tool I propose

that we adapt a set of Data Dictionary conventions, tailored to the

analysis phase.

• New tools to describe logic and policy, something better than narrative

text. For this I propose three possibilities: Structured English, Decision

Tables, and Decision Trees.

Now that we have laid all the groundwork, it is easy to give a working

definition of Structured Analysis:

Structured Analysis is the use of these tools:

• Data Flow Diagrams

• Data Dictionary

• Structured English

• Decision Tables

• Decision Trees

to build a new kind of... Document, the Structured Specification.

Although the building of the Structured Specification is the most important

aspect of Structured Analysis, there are some minor extras:

Project Demonstrating Excellence 24 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

• estimating heuristics

• methods to facilitate the transition from analysis to design

• aids for acceptance test generation

• walkthrough techniques

He went on to describe what Structured Analysis should not do, primarily any

thing does not directly deal with the “problem set.” If you carefully review Tom

DeMarco’s proposal you will find processes (functions), data (objects), and decision

trees/table (states). What is interesting is that every method contains object, states, and

functions (OSF). If you know how to utilize the OSF techniques for one method, it is

fairly easy to convert it to another method [John White 94].

From the 1960s to the mid-1980s hundreds of computer system platforms came

into being (generally PC platforms) along with software applications that increased the

software development complexity even more. Roger Pressman [Pressman92] described

the inherent complexity and software applications.

It is somewhat difficult to develop meaningful generic categories for software

applications. As software complexity grows, neat compartmentalization

disappears. The following software areas indicate the breadth of potential

applications:

System Software — System software is a collection o f programs written to

service other programs. Some system software (e.g., compilers, editors, and

file management utilities) process complex, but determinate, information

structures. Other system applications (e.g., operating system components,

drivers, telecommunications processors) process largely indeterminate data. In

either case, the system software area is characterized by heavy interaction with

computer hardware; heavy usage by multiple users; concurrent operation that

requires scheduling, resource sharing, and sophisticated process management;

complex data structures; and multiple external interfaces.

Gregory E. Russell 25 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Real-Time Software — Software that monitors/analyzes/controls real-world

events as they occur is called real-time. Elements of real-time software include

a data gathering component that collects and formats information from an

external environment, an analysis component that transforms information as

required by the application, a control/output component that responds to the

external environment, and a monitoring component that coordinates all other

components so that real-time response (typically ranging from 1 millisecond

to 1 minute) can be maintained. It should be noted that the term “real-time”

differs from “interactive” or “time-sharing.” A realtime system must respond

within strict time constraints. The response time o f an interactive (or time

sharing) system can normally be exceeded without disastrous results.

Business Software — Business information processing is the largest single

software application area. Discrete “systems” (e.g., payroll, accounts

receivable/payable, inventory, etc.) have evolved into management

information system (MIS) software that accesses one or more large databases

containing business information. Applications in this area restructure existing

data in a way that facilitates business operations or management decision

making. In addition to conventional data processing application, business

software applications also encompass interactive computing (e.g., point-of-

sale transaction processing).

Engineering and Scientific Software — Engineering and scientific software

has been characterized by “number crunching” algorithms. Applications range

from astronomy to volcanology, from automotive stress analysis to space

shuttle orbital dynamics, and from molecular biology to automated

manufacturing. However, new applications within the engineering/scientific

area are moving away from conventional numerical algorithms. Computer-

aided design (CAD), system simulation, and other interactive applications

have begun to take on real-time and even system software characteristics.

Project Demonstrating Excellence 26 Gregory E. Russell

j with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Embedded Software — Intelligent products have become commonplace in

nearly every consumer and industrial market. Embedded software resides in

read-only memory and is used to control products and systems for the

consumer and industrial markets. Embedded software can perform very

limited and esoteric functions (e.g., keypad control for a microwave oven) or

provide significant function and control capabilities (e.g., digital functions in

an automobile such as fuel control, dashboard displays, braking systems, etc.).

Personal Computer Software — The personal computer software market has

burgeoned over the past decade. Word processing, spreadsheets, computer

graphics, entertainment, database management, personal and business

financial applications, external network, or database access are only a few of

hundreds of applications. In fact, personal computer software continues to

represent some of the most innovative human-interface designs of all

software.

Artificial Intelligence Software — Artificial intelligence (AI) software

makes use of nonnumerical algorithms to solve complex problems that are not

amenable to computation or straightforward analysis. Currently, the most

active AI area is expert systems, also called knowledge-based systems.

However, other application areas for AI software are pattern recognition

(image and voice), theorem proving, and game playing. In recent years, a new

branch of AI software, called artificial neural networks, has evolved. A neural

network simulates the structure of brain processes (the functions of the

biological neuron) and may ultimately lead to a new class o f software that can

recognize complex patterns and learn from past “experience.”

Most of these software applications have been around for at least 20 years. The

only applications that are new, as compared to system, scientific and engineering, and

business, are personal computer and artificial intelligence applications. Yes, compilers,

operating systems, and business systems are advancing, but they based their current

functionality on twenty year old code. The problem is that we are building our software

Gregory E. Russell 27 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

applications upon loose soil. It is only by chance that most of these systems do not come

tumbling down to our feet with disastrous results. Roger Pressman [Pressman92]

commented on this dilemma:

At the risk of sounding melodramatic, the software industry today is in a

position that is quite similar to the steel industry of the 1950s and 1960s.

Across companies large and small, we have an aging “software plant;” there

are thousands of critical software-based applications that are in dramatic need

of refurbishing:

• Information system applications written 20 years ago that have

undergone 40 generations of changes and are now virtually

unmaintainable. Even the smallest modification can cause the entire

system to fail.

• Engineering applications that are used to produce critical design data,

and yet, because of their age and state of repair, are not really

understood. No one has detailed knowledge of the internal structure of

their programs.

• Embedded systems (used to control power plants, air traffic, and

factories, among thousands of applications) that exhibit strange and

sometimes unexplained behavior, but that cannot be taken out of

service because there's nothing available to replace them.

It will not be enough to “patch” what is broken and give these applications a

modem look. Early components o f the software plant require significant re

engineering, or they will not be competitive during the 1990s and beyond.

Roger Pressman may be a bit pessimistic, but he is not the only one concerned

with the current state of our software industry. Part of these concerns drove

methodologists in the late 1970s and 1980s to develop another software development

method called object-oriented. Object-oriented programming originated from Simula67

and SmallTalk80, languages developed in the 1967 and 1980 respectively [Sebesta93].

Project Demonstrating Excellence 28 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Object-Oriented Methods

Object-oriented software development methods evolved out of the programming

methods due to the problems with using structured methods to formulate classes (a

special object) and methods (functions and states). There were other problems that Lem

Ejiogu [Ejiogu91] discusses:

Since 1986, a new philosophy about systems design has been called Object-

Oriented Programming (OOP). The proponents argue that the conventional

Software Life Cycle (SLC) have “chronic problems.” However, no alternative

model of the SLC has been proposed as a solution. Whether this is real, or the

full potential of the SLC model has not yet been tapped, or the overwhelming

need is to completely automate the design process (even when the principles

of design are still unformalized), or a new terminology is being hatched,

remains to be seen. The new methodology is at this time in its hypothetical

cycle.

Some disciples think that OOP or OOSE (Object-Oriented Software

Engineering) is the beginning of a new revolution and hence the end of the

structured revolution. This is erroneous. Although its principles are yet to be

formalized beyond hypotheses, OOP is actually a rigorous formalistic

extension of the structured revolution; its basis of philosophy is a subclass of

that of the structured revolution. Logically, for any revolution to be unique, its

thesis of foundation must be distinct and independent. With its core thesis on

data abstraction, encapsulation and inheritance (a nice term for hierarchy;

note: these are fundamental terms/concepts from structured programming),

OOP may be seen as a concentrated effort to bring mathematical reasoning to

software engineering. While CASE may be seen as revolution in tools, OOP

may be seen as a revolution in optimal implementation of software systems —

design, coding, and testing in particular. However, it is only hoped that the

same disease that plagued structured programming — proliferation of

Gregory E. Russell 29 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

methodologies and tools simultaneous with poor theoretical formalism — will

not strangle OOP.

Lem Ejiogu alluded that the same problems that “plagued” the structured methods

are now starting to “plague” the object-oriented methods. Over the past few years I have

seen several methodologists working with either consulting firms or computer-aided

software engineering (CASE) vendors to peddle their methods. These methodologists

have not done an extensive research study on their methods [refer to page 104 for a

detailed account of Software Engineering research methods]. Daniel Berry [Berry92]

cautioned:

... There are many people selling software engineering snake oil and many

charlatans who do no substantial work. These people are described as

evangelists for their own methods, which they claim will solve all the world's

problems. Probably they have consulting companies [or CASE vendors] that

sell the method for megabucks, and they are interested only in advancing the

fortunes of the company.

As with all new products the buyer should differentiate between the hype and

actual functionality of the product. Again we are dealing with methods or applications

that automate methods that are advertised as the “silver bullet” to solve all the software

development complexity problems. James Martin, the gentleman who created

Information Engineering, understands the motivation behind the methodologist and

CASE vendors (He developed the Information Engineering Method and created a CASE

company to sell the method). He also recognizes that software development organizations

need to reorganize and streamline their operations. One way, is to use newer methods or

to fully understand the current methods. James Martin [Martin93] stated:

Most enterprises (except very small ones) need redesigning today in order to

take advantage of new technology and networks, streamline procedures,

eliminate redundancy and bureaucracy, and empower the employees to add

more value. Business process redesign is the most important function of

Information Systems departments. To redesign the value chains of an

Project Demonstrating Excellence 30 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

enterprise, the chains need to be modeled. Object-oriented (0 0) modeling is

the best way to do this. The models should reflect the business policies and

rules, and 0 0 tools should allow these to be translated into operational

systems as automatically as possible. When the business policies change

(which happens constantly), the business systems should be regenerated

quickly to reflect the change.

What are object-oriented (0 0) models and techniques? They are similar to the

structured models and techniques. Although 0 0 analysis and design are still very new

and most of the promising methods have connectivity problems, that is, it is very difficult

to transverse from analysis to design.

Structured analysis and design methods use two techniques to translate from

analysis to design. These techniques are called transaction and transformation analysis.

These two techniques allow the designer to chose where to place the high-level

component based on whether the data is transformed or some type of transaction is being

perform on the data within a specific process. From there the designer can determine

where to place the other processes based on where those processes are leveled

(hierarchical order) in the data flow.

Currently there is a huge gap between 0 0 analysis and design. There are two

methodologists earnestly working on the problem, Rumbaugh and Booch. Both have

stated that they will have a viable OO analysis and design method that will provide the

connectivity within the next year. When they do overcome the problem it will

revolutionize software analysis and design processes. James Martin [Martin93] confirms

this:

Today's software is relatively trivial. To make computers into synergistic

partners for humans, they need complex software. Software of the necessary

complexity probably cannot be built using traditional structured techniques

alone. In the mid-1980s, authorities of structured techniques claimed that

building the proposed systems of 50 million lines of code was impossible. Our

future requires software in which systems of 50 million lines of code will be

Gregory E. Russell 31 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

commonplace. Object-oriented techniques with encapsulation, polymorphism,

repository-based development, design automation, and code generators are

essential for this.

The advantage of object-oriented programming is that:

An object’s procedures and data are hidden from the other parts o f a program.

This is called “encapsulation.” An object’s data can only be manipulated from

inside the object. An object’s procedures are called its “methods.” An object’s

methods can be changed internally without affecting the other parts of a

program. Each object is independent and can be used in many different

systems without changing the it program code[, this is referred to as reusable

code or objects].

Object-oriented programming is based on the concepts of “class” and

“inheritance,” Classes are general categories of similar objects. A class is

never used directly in a program. Object are. A class is used for creating

objects which are “instances” of that class. Objects belonging to a certain class

“inherit” all then structures and behaviors of that class. Each object can be

modified by adding variables and behaviors unique to the object. ... New

classes of objects can be created by choosing an existing class and specifying

how the new class differs from the existing class. [Walsh94]

What is the aim of OO analysis (OOA) and design (OOD)? First, let’s discuss the

design process, and the analysis process will fall right into place. The primarily aim of

OOD is to determine the objects in a product and then to design the product in terms of

those objects. As mentioned before, there are a number of OOD methods in the software

engineering field. Although they differ with regard to detail, almost every version of

OOD consists of the following four steps:

1. Define the problem as concisely as possible

2. Develop an informal strategy a general sequence of steps for satisfying the

requirements specification subject to the internal and external constraints.

Project Demonstrating Excellence 32 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

3. Formalize the strategy:

• Identify the objects and their attributes.

• Identify operations to be applied to the objects.

• If possible, identify classes

4. Proceed to detailed design and implementation

Steps 1 and 2 are performed during the analysis or specification software life

cycle phase. OOD itself is a technique applicable only to the architectural design phase.

Steps 2 and 3 may be applied stepwise (decomposed) until the architectural design

is satisfactory. For large products, this stepwise approach is all but mandatory. However,

this is not unexpected; stepwise refinement is used throughout software engineering in

order to reduce the complexity.

Also, remember that I said that OO methods are similar to structured methods. If

you review the above methods with those described by Tom DeMarco in the last section

you find that they are very similar. The big difference between OO methods and

structured methods is how you look at the problem. Structured methods commence by

considering the system’s behavior or data separately; object-oriented methods combines

them and regards them as integrated objects. It is this integration of the system data and

behavior that allows the analyst and designer to reduce the complexity of the system by

creating a system abstract model. This model then can be implemented in either an OO

programming language or standard procedural language (although not as easy as the OO

language). James Martin [Martin93] describes some object-oriented development

methods but primarily object-oriented programming techniques:

The world o f object-oriented techniques ... [are] different. The designer

thinks in terms of objects and their behavior, and code is generated. ... Most

systems can be built without having to think about loops, branches, and

program control structures. The system builder learns a different style of

thinking. Events cause changes in the state of objects. Most of these state

changes require small pieces of code, so coding is less error prone. Object

Gregory E. Russell 33 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

types are built out o f other object types. If an object type works well, the

designer should treat it as a black box which he never looks inside (just as you

never look inside your VCR). Software engineering then assumes more of the

characteristics of hardware engineering.

The problem with conventional [structured] programming is that it allows the

programmer to do anything he wants. Data can assume any structure and

processes can do anything to the data that the programmer desires. A branch

instruction can link to far-away code and change variables. Any instruction in

a computer can modify any location in the machine's memory. The number of

path combinations exceeds any capability to test them all. The program

becomes unpredictable and uncontrollable.

In object-oriented programming, each object is restricted to sending requests

to other objects. An object receiving a request checks its validity and executes

a method. Most methods are relatively simple and, by themselves, relatively

easy to test.

This “ease” of design, implementation, and testing will come about as the OO

methods mature. However, the ramifications of OO methods in the software engineering

field are tremendous, especially reducing the complexity in system development and

maintenance. According to James Martin [Martin93]:

To help deal with the complexities, structured programming came into use. It

reduced the spaghetti in code, but programming was still based on the

expected sequence o f executing instructions. The attempt to design and debug

programs by thinking through the order in which the computer does things

ultimately leads to software that nobody can fully understand.

One of the most urgent concerns in the computer industry today is the need to

create software and corporate systems much faster and at lower cost. To put

the ever-growing, power of computers to good use, we need software of much

greater complexity.

Project Demonstrating Excellence 34 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

OO techniques make software engineering more like hardware engineering in

that software is built from existing components, where possible. Just as a

hardware designer does not change a microchip, a software designer does not

tamper with the software chips.

James Martin is referring to the ultimate goal of OO methods, using software

components or reusable code. Unfortunately the industry is just beginning to recognize

the benefits of structured methods, after being promoted for over twenty years. Although

there are similarities between the two methods, the problem solving methods are

extremely different. It this difference that will cause problems in a software development

organization if they do not have a firm foundation in structured methods and an excellent

footing in viewing the world as objects. James Martin [Martin93] also commented on this

subject:

Introducing OO technology can present problems, and some OO projects have

failed. Like any other software technology, OO is not a panacea.

To use OO technology well, much careful training is needed. It takes time for

computer professionals to think in terms of encapsulation, inheritance, and the

diagrams of OO analysis and design. After an attempted switch to OO ,

traditional analysts may still tend to think in terms of structured

decomposition, dataflow diagrams and conventional database usage. They

often think in terms of data independence rather than class encapsulation. C++

and other nonpure OO tools allow developers to use non-00 constructs, and

some of them regress to non-00 design and programming.

Good use of inheritance and reusable classes requires cultural and

organizational changes. The class library needs to be well managed. In most

organizations, building up the library of classes needed to achieve a high level

of reusability will take a long time.

Gregory E. Russell 35 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Currently, OO tools, although exciting, suffer from immaturity compared with

the well-established, traditional CASE tools. Some traditional tools have been

given a flavor of OO but still require non-00 techniques.

When a traditional project gets in trouble, it can often be rescued with skilled

people. When a project with new tools and techniques gets in trouble, the

talent may not be available to rescue it.

Successful introduction of OO technology needs both good education for

every developer and managers who know what they are doing. The support

staff needs to be established. The developers who build classes are often

separate from the developers who use classes. OO has succeeded spectacularly

with individual developers and small skilled teams. However, introducing it to

a large group of traditional developers is more difficult. The biggest payoff in

OO technology comes when its use is widespread which maximizes

reusability and minimizes maintenance costs.

The proponents of OO claim that the biggest advantage to OO methods is

reduction in complexity during software analysis, design, implementation, and testing

phases. However, the proponents of structured methods made that same claim almost

twenty years ago [DeMarco79].

Software Complexity and Risk

Software engineers have to be wary of claims that are not fully validated in the

industry. We will always have to deal with complexity in our products. If the software

engineers and managers fully understand the software complexities inherent in their

development practices and within the product itself, we can then come to grips with the

problem successfully and then start to manage the processes in a mature manner.

Unfortunately, the vast majority of software practitioners and managers not only

have a limited understanding of software methods, they do not understand the

complexities involved with software development. I have met many middle and upper

Project Demonstrating Excellence 36 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

managers who firmly believe that given a good software development tool they can hire

entry-level programmers to replace senior-level programmers. These managers have an

unrealistic view of software and its inherent complexity. According to Tom DeMarco

[DeMarco82]:

What is this thing called “complexity,” and how does it affect software

development? The nature and effects of complexity have been studied for

years by systems people, but our industry has not even been able to settle on a

definition. In a charming essay on complexity, Bill Curtis was driven to this

one:

Complexity is a not so-warm feeling in the tummy.

Perhaps, when you first began the business of software development, you

were exhorted, as I was, to “Keep it simple, Stupid.” The flattering

implication of this saying is that we software people are all to intelligent for

our own good, and that is the root cause of complexity, if we were dumber, we

could write simpler software. But simple software, we now know, is never

produced by the simple-minded. Taking something that is inherently complex

and making simple, or even a bit simpler, is a great intellectual achievement.

The causes of complexity are so profound, and the pursuit of simplicity so

difficult, that Niklaus Wirth, the man whose very name is synonymous with

elegant simplicity, was led to this wistful remark:

You vow to make it simple at all cost. You accept complexity as your

enemy. Then you build it, doing your best to control complexity... and it

comes out complex anyway.

We may never have a firm enough intellectual grasp of complexity to

eliminate it from our work.

Capers Jones [Jones91] identified 20 complexities inherent in either software

development or within the software application itself:

Gregory E. Russell 37 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

All of the complexity research on software to date has been based on new

programs. There are no pragmatic studies on complexity when updating an

existing system, although empirical evidence reveals that updates have

perhaps 3 times the error potential of new code for equal volumes and that

errors correlate with structure. When the major forms o f complexity that affect

software projects are considered, there are at least 20 o f them. As of 1991,

only a few of them have been measured objectively and numerically; the rest

still await exploration. The 20 varieties of complexity include the following:

1. Algorithmic complexity (deals with spatial complexity and algorithmic

volumes).... The basic concept is the length and structure of

algorithms intended to solve various computable problems....

Examples of problems with high algorithmic complexity include radar

tracking and target acquisition.

2. Computational complexity (deals with chronological complexity and

run time lengths).... The basic concern is the amount of computer time

or the number of iterations required to solve a computational problem

or execute an algorithm.... Examples of problems with high

computational complexity include long-range weather prediction and

cryptographic analysis.

3. Informational complexity (deals with entities and relationships). This

form of complexity has become significant with the rise of large

database applications.... Examples of problems with high

informational complexity include airline reservation systems,

integrated manufacturing systems, and large inventory management

systems.

4. Data complexity (deals with numbers of entity attributes and

relationships). This form of complexity, similar in concept to

informational complexity, deals with the number of attributes that a

single entity might have. For example, some o f the attributes that

Project Demonstrating Excellence 38 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

might be used to describe a human being include sex, weight, height,

date of birth, occupation, and marital status.

5. Structural complexity (deals with patterns and connections). This form

of complexity deals with the overall nature of structures.

6. Logical complexity (deals with combinations of AND/OR/NOR/

NAND logic). This form of complexity deals with the kinds of logical

operations that comprise syllogisms, statements, and assertions. It is

much older than software engineering, but it has become relevant to

software because there is a need for precise specification of software

functions.

7. Combinatorial complexity (deals with permutations and

combinations). This form of complexity deals with the numbers of

subsets and sets that can be assembled out of component parts.

8. Cyclomatic complexity (deals with nodes and edges of graphs). Its

basic concern is with the graph formed by the control flow of an

application. Unlike some of the other forms of complexity, this one

can be quantified precisely.

9. Essential complexity (deals with nodes and edges of reduced graphs).

This form of complexity is similar in concept to cyclomatic

complexity, but it deals with a graph after the graph has been

simplified by the removal of redundant paths.

10. Topologic complexity (deals with rotations and folding patterns). This

form of complexity is explored widely by mathematicians but seldom

by software engineers. The idea is relevant to software, since it can be

applied to one of the intractable problems of software engineering:

attempting to find the optimal structure for a large system.

11. Harmonic complexity (deals with waveforms and Fourier

transformations). This form of complexity is concerned with the

Gregory E. Russel! 39 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review o f the Current Literature

various waveforms that together create an integrated wave pattern. The

topic is very important in physics and engineering, but it is only just

being explored by software engineers.

12. Syntactic complexity (deals with grammatical structures of

descriptions). This form of complexity deals with the structure and

grammar of text passages. Although the field is more than 100 years

old and is quite useful for software, it has seldom been utilized by

software engineers. Its primary utility would be in looking at the

observed complexity of specifications with a view to simplifying them

for easier comprehension. It has a number of fairly precise

quantifications, such as the FOG index and the Fleish index.

13. Semantic complexity (deals with ambiguities and definitions o f terms).

This form of complexity is often a companion to syntactic complexity.

It deals with the definitions of terms and the meaning o f words and

phrases. Unlike syntactic complexity, it is rather amorphous in its

results.

14. Mnemonic complexity (deals with factors affecting memorization).

This form of complexity deals with the factors that cause topics to be

easy or difficult to memorize.

15. Perceptional complexity (deals with surfaces and edges). This form of

complexity deals with the visual appearance o f artifacts and whether

they appear complex or simple to the human perceiver. Regular

patterns, for example, tend to appear simpler than random

configurations with the same number of elements.

16. Flow complexity (deals with channels and fluid dynamics of

processes). This form of complexity concerns fluid dynamics, and it is

a major topic of physics, medicine, and hydrology. An entirely new

subdiscipline of mathematical physics termed “chaos” has started to

Project Demonstrating Excellence 40 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

emerge, and it seems to have many interactions with software

engineering.

17. Entropic complexity (deals with decay and disorder rates). All known

systems have a tendency to move toward disorder over time, which is

equivalent to saying that things decay. Software, it has been

discovered, also decays with the passage of time even though it is not a

physical system. Each time a change is made, the structure of a

software system tends to degrade slightly. With the passage of enough

time, the disorder accumulates sufficiently to make the system

unmaintainable.

18. Functional complexity (deals with patterns and sequences of user

tasks). This form of complexity concerns the user perception of the

way functions within a software system are located, turned on, utilized

for some purpose, modified if necessary, and turned off again.

19. Organizational complexity (deals with hierarchies and matrices of

groups). This form of complexity deals not with a software project

directly, but with the organizational structures o f the staff that will

design and develop it. It has been studied by management scientists

and psychologists for more than 100 years, but only recently has it

been discovered to be relevant to software projects. A surprising

finding has been that large systems tend to be decomposed into

components that match the organizational structures of the developing

enterprise rather than components that match the needs o f the software

itself.

20. Diagnostic complexity (deals with factors affecting identification of

malfunctions). When a medical doctor is diagnosing a patient, certain

combinations of temperature, blood pressure, pulse rates, and other

signs are the clues needed to diagnose specific illnesses. Similarly,

when software malfunctions, certain combinations of symptoms can be

Gregory E. Russell 41 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

used to identify the underlying cause. This form of complexity analysis

is just starting to be significant for software projects.

Besides these complexities there are others. As software engineering researchers

delve deeper into the “what” and “how” of software development more complexities will

be discovered. Besides the 20 complexities identified by Tom DeMarco, Lem Ejiogu

[Ejiogu91] identified three more complexities:

Psychological Complexity — expresses a measure of functional “fear”

imposed on us (programmers, analysts, etc.) by a software project/task. The

relative dwarfing effect of a project depends on our ability to fully

comprehend its dimensions of configurations. This is why this behavior of

software is derived from structural complexity. But it must be cautioned that

conventional measures of programmer competence or speed of production are

poor models of psychological complexity—that which is imposed on us must

be distinguished from that which is a reflection (consequence) of our reaction.

Comprehension or perception precedes performance; the two are independent

events.

Cost Complexity — deals with the various ramifications o f determining the

cost of computing resources (including human and material) and forecasting in

software productivity (allocation and scheduling). Current models of cost

estimation rely on [counting] lines-of-code (LOC), but considering the so

many lines of code deleted or modified during development or the undefined

definition of what constitutes a LOC, these models are clearly uninformative,

unscientific, and, therefore, defective. The cost of a product must effectively

reflect the individual costs of its disparate components.

Readability Complexity — A post-code behavior that measures the degree of

comprehension of a software module. Although related to psychological

complexity, the characteristics here actually relate to complete and efficient

refinement — each node carries a single thought.

Project Demonstrating Excellence 42 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Lem Ejiogu [Ejiogu91] futher commented on how software developers should be

looking at the complexity classifications rather than the general term of “complex”,

This [complexity] classification can help do away with the myths that

software complexity does not depend on (software) size; or that the number of

bugs depends on program size (note: measurement of bugs is a quality issue,

while that of size is a complexity issue); or that quality is the inverse o f

complexity. Henceforth, the word “complexity” will be understood as X-

complexity where X is a category o f complexity.

Software engineering researchers are just beginning to understand software

complexity issues and how to measure them. To bring complexity “under control” we

must measure the effects of complexity. Thomas McCabe developed a complexity

measure during the mid-1980s. This measurement method is commonly termed the

“McCabe complexity measures” or “cyclomatic complexity.” Capers Jones [Jones86]

discussed McCabe’s method in some detail:

McCabe’s complexity measurement procedures is to graph the flow of control

of a program as shown in this figure.

> 20 times

Gregory E. Russell 43 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

The McCabe technique is to count the number of regions in the resulting

graph, where “regions” are defined as the surrounding outside area of the

graph and all enclosed or bounded domains [(you count the nodes)]. Thus in

the above figure, there are 11 regions in all, and hence the McCabe

complexity measure would be 11.

McCabe has noted certain correlations between the complexity number and

the real-life subjective difficulty of a piece of software:

• Modules or programs with a complexity number of less than 5 are

usually considered simple.

• Modules or programs with a complexity number o f greater than 5, but

less than 10 are usually considered well structured and stable.

• In modules or programs with a complexity number of 20 or higher

there appears to be a direct correlation between the number and

subjective complexity.

• Modules or programs scoring higher than 50 are often error-prone and

viewed as extremely troublesome.

In practical terms, the McCabe complexity metrics predict that as the number

o f branches in a program goes up, the complexity also goes up, and by

implication, the number of bugs and errors should go up also.

The McCabe complexity measure has been one of the most successful trouble

indicators or “bug predictors” yet discovered.

However, in spite of the success of McCabe’s complexity measure, it only

covers code-branching situations in finished programs and has no direct way

of dealing with the complexity of the original problem.

The McCabe’s complexity measure will at least help the software practitioners to

understand the software product internals. We still need complexity measures for the

requirements elicitation and the software development organizational structure. The

Project Demonstrating Excellence 44 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

previous discussions have pointed out that building software is only one aspect of a

greater picture. The organizational structure contributes to software complexity as well.

As software products increase in size, the communication paths increase exponentially.

According to Lawrence Putnam [Putnam92] large-scale software development is

extremely complex, just in the organizational nature.

In the case of large systems, all of this complexity is spread over many people

in different specialties. These people may be supervised by several layers of

management and serviced by a variety o f staff groups. Each person must

communicate somehow to specific other persons what they need to know

about his or her work and must receive, probably from still other people, what

he or she needs to know all this without burdening everybody with everything.

The complexity “makes overview hard, thus impeding conceptual integrity,”

Brooks went on. “It makes it hard to find and control all the loose ends. It

creates the tremendous learning and understanding burden that makes

personnel turnover a disaster.”

Those who have worked on large software projects can fill in the details of

this spider's web themselves. For those who haven't, consider the detective

novel. This type of novel runs about 100,000 words, or perhaps 10,000 short

sentences. A high-level computer instruction is roughly equivalent to a short

sentence in thought content. A large program of one million source lines of

code would thus be equivalent to some 100 novels.

Imagine trying to keep track of the plots, characters, weapons, and the milieus

in 100 murder mysteries. For the software comparison moreover, all these

novels would have to be tied together in one vast novel. All one hundred

authors would have to be coordinated to write around one intricate plot. That

planning and writing organization would take many layers of management on

top of the prima donna authors. That is roughly the organizational situation in

which much large-scale software development finds itself.

Gregory E. Russell 45 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

The results of all this complexity have been

• Poor planning decisions

• Cost overruns

• Schedule slippages

• Poor quality products

• Reduced-function products

• Unhappy users or customers

• Animosity within the organization.

There are at least three software engineering research institutions (Software

Engineering Institute (SEI), Carnegie Mellon University, Software Engineering

Laboratory, University of Maryland, and Software Productivity Research, Inc.) that are

actively researching and validating methods to overcome the complexities previously

discussed. However, for some reason software development organizations, managers and

practitioners alike, disregard this work as “academic exercises” that do not have any

validity for their organization. In other words, these organizations believe in the axiom,

“Not invented here.” Almost every organization that I have served as a software

engineering consultant had this attitude. Lem Ejiogu [Ejiogu91] also commented on this

problem.

The phrase, “Intellectual Management of Complexity,” attributed to Dr.

Edsger W. Dijkstra, has come to be synonymous with programming

“I now suggest that we confine ourselves to the design and

implementation o f intellectually manageable programs ”

It is an attempt to signal to the computing industry the real nature of the

monster with which it has engaged as if in a battle. Contrary to misconceived

and commonplace beliefs current in the days o f ad hoc management of

software productions, this phrase was intended to bring to the general

Project Demonstrating Excellence 46 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

consciousness o f practitioners the need for better education and, therefore,

better understanding of the problems of software productivity.

The key words, “intellectual” and “complexity,” serve exactly this purpose. In

some environments, it was thought that software development (computer

programming) required no more than a six-month crash course to be continued

with some on-the-job exposure to coding, testing, designing, etc., in some

programming languages. There are still practicing professionals today who

feel that academic discourses and theoretical investigations of computer

science are too far beyond what the industry needs, which they think is just a

team of code manufacturers. Even some computer science departments

continue to drill their students in the algorithms, programming languages, and

“laboratory” exercises on coding and testing, with little or no emphasis on

necessary mathematical disciplines, such as queuing theory, matrix theory,

mathematical statistics, abstract algebra, topology, measure theory, and theory

of measurement, etc. Essentially, theory is divorced nearly completely from

applications as unrelated. What is worse, there are some educators and

industry leaders and experts who decry the exploration o f principled and

theoretical ideas as delayed or wasteful productivity . They advocate

immediate coding. These subjects were merely thought to benefit only

students of programming languages, computer hardware designs, and

operating systems.

Management and the software practitioners must take responsibility upon

themselves to overcome any dificiencies they may have in software production methods

and practices. As Ejiogu referred to above, we will not overcome most of our difficulties

until we change the way we teach computer science and software engineering in our

academic institutions and provide organizational training for software managers and

practitioners as to the realities of software complexity and the methods to overcome them.

Over the last 15 years the software industry has been trying to make these changes in our

academic institutions with very little success [Christiansen92c],

Gregory E. Russell 47 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Software Development Management

As academia must change the way it teaches computer science and software

engineering programs, software project managers must change the way they manage

software projects. We discussed the complexities inherent in software development and

within the software itself. All of these complexities have to be managed by individuals

with a keen insight on how to restrain them. Software project management comes in three

flavors: project management, quality management, and process management. I call the

combination of all the management skills, Software Development Management. A good

software project manager is proficient in all three. Unfortunately, managers with these

skills are few in number.

Within the next few pages I will try to highlight the problems that software

development managers are facing now and why those problems exist. Grady Booch

[Booch91] explained the main reason why we have tremendous problems with software

development. It all started in the beginning...:

A physician, a civil engineer, and a [software engineer] were arguing about

what was the oldest profession in the world. The physician remarked, “Well,

in the Bible, it says that God created Eve from a rib taken out o f Adam. This

clearly required surgery, and so I can rightly claim that mine is the oldest

profession in the world.” The civil engineer interrupted, and said, “But even

earlier in the book of Genesis, it states that God created the order of the

heavens and the earth from out of the chaos. This was the first and certainly

the most spectacular application of civil engineering. Therefore, fair doctor,

you are wrong; mine is the oldest profession in the world.” The [software

engineer] leaned back in her chair, smiled, and then said confidently, “Ah, but

who do you think created the chaos?”

Some of us believe that the Chaos theory was created to help the software

practitioners and managers to better understand their environment. Out o f chaos comes

order and software development management is the attractor that will bring about that

order. I have discussed the software environmental problems in part, but I have not

Project Demonstrating Excellence 48 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

explained the development phases that are encountered in every software development

methodology, regardless of application area, project size or complexity. They are

definition, development, and maintenance. According to Roger Pressman [Pressman92]

the are defined as:

The definition phase focuses on what. That is, during definition, the software

developer attempts to identify what information is to be processed, what

function and performance are desired, what interfaces are to be established,

what design constraints exist, and what validation criteria are required to

define a successful system. The key requirements of the system and the

software are identified. Although the methods applied during the definition

phase will vary depending upon the software engineering paradigm (or

combination of paradigms) that is applied, three specific steps will occur in

some form:

Systems analysis. System analysis defines the role of each element in a

computer-based system, ultimately allocating the role that software will

play.

Software project planning. Once the scope of the software is established,

risks are analyzed, resources are allocated, costs are estimated, and work

tasks and schedule are defined.

Requirements analysis. The scope defined for the software provides

direction, but a more detailed definition of the information domain and

function of the software is necessary before work can begin.

The development phase focuses on how. That is, during definition the

software developer attempts to define how data structure and software

architecture are to be designed, how procedural details are to be implemented,

how the design will be translated into a programming language (or

nonprocedural language), and how testing will be performed. The methods

Gregory E. Russell 49 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

applied during the development phase will vary, but three specific steps will

always occur in some form:

Software design. Design translates the requirements for the software into a

set of representations (some graphical, others tabular or language based)

that describe data structure, architecture, algorithmic procedure, and

interface characteristics.

Coding. Design representations must be translated into an artificial

language (the language may be a conventional programming language or a

nonprocedural language used in the context of the 4GL paradigm) that

results in instructions that can be executed by the computer. The coding

step performs this translation.

Software testing. Once the software is implemented in machine executable

form, it must be tested to uncover defects in function, in logic, and in

implementation.

The maintenance phase focuses on change that is associated with error

correction, adaptations required as the software's environment evolves, and

enhancements brought about by changing customer requirements. The

maintenance phase reapplies the steps of the definition and development

phases, but does so in the context of existing software. Three types of change

are encountered during the maintenance phase:

Correction. Even with the best quality assurance activities, it is likely that

the customer will uncover defects in the software. Corrective maintenance

changes the software to correct defects.

Adaptation. Over time, the original environment (e.g., CPU, operating

system, peripherals) for which the software was developed is likely to

change. Adaptive maintenance results in modification to the software to

accommodate changes to its external environment.

Project Demonstrating Excellence 50 Gregory E. Russell

with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Enhancement. As software is used, the customer/user will recognize

additional functions that will provide benefit. Perfective maintenance

extends the software beyond its original function requirements.

In extremely simple terms, these generic phases are performed by acquiring

resources (material and personnel) and funds (cost). The final variables are the software

functionality and the time provided to accomplish the task. James Lewis [Lewis95]

described this relationship:

For many years it has been customary to say that project management is the

planning, scheduling, and controlling of project activities to achieve

performance, cost, and time objectives, for a given scope of work, while using

resources efficiently and effectively. These have been referred to as PCT

objectives. They are also commonly called good, fast, and cheap. These more

colorful terms capture the essence of what a project manager must achieve.

The last sentence of the definition is really loaded! The three objectives must

be met while using resources efficiently and effectively. This is a key point in

project management, and one that is too often overlooked. Every organization

has limited resources, and unless the project manager can deal successfully

with the resource allocation problem, she will not be successful. Experience

shows that in many environments failure to manage resources properly is one

o f the most common causes of project failure.

The relationship among the four variables is given by the following equation:

C = f (P,T,S)

In words, the equation says, “Cost is a function of Performance, Time, and

Scope.” Ideally, a real equation could be written prescribing the actual

relationships precisely. In practice, we never know that precise relationship.

We have to estimate times and costs.

I have been using an equation similar to Lewis’s equation. This equation looks at

cost (C), time (T), resource (R), and functionality (F). While Lewis’s equation deals with

Gregory E. Russell 51 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

performance as a separate entity, I include this entity within functionality. The equation

then becomes:

C=f(T,R,F)

This equation allows the manager to look specifically at the issues at hand, project

cost, project duration or schedule, resources available, and implementation issues. With

both equations you can manipulate three variables.

The problem with both of these equations is that you have to have a pretty good

grasp o f the cost estimates and system requirements. As I have discussed earlier, this is

not generally the case in the initial project stage. So what good is the equation. I primarily

use it to demonstrate to management that if a decision is made to reduce the schedule or

cost or to increase the functionality, one or more of the other variables have to change.

For example, if the schedule is shorten in duration you will have to decrease functionality

or increase cost and resources. Wait a minute, you say? Why would you increase cost or

resources? If you decrease the schedule time, why won’t you decrease your effort (cost

and resources)? This will only decrease, if you decease the functionality. If you have a 12

month project and reduce it by 10% and maintain the same functionality your total effort

will be 52% greater than your 12 month effort [Humphrey95]. Conversely, if you

increase your schedule by 10% you total effort will be reduced by 37% [Humphrey95].

These percentage are very simple to determine if you know how to use Taylor series

methods.

Robert Block [Block83] also commented on this subject and discussed the

common failures related to time, functionality (scope), and people (cost and resources),

Resource failures involve conflicts of people, time, and scope; that is, the

people and the amount of time allotted are not sufficient to build the required

system. These failures are most often due to imposed deadlines combined with

an inability or unwillingness by management to provide adequate resources.

Resource failures result in systems that are late and frequently over budget.

Project Demonstrating Excellence 52 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Incorrect, incomplete, or unclear specification of system requirements leads to

requirement failures.

Goal failures result from inadequate or incorrect statements of the system

goals by management, or from a misunderstanding of the goals by the system

builders.

Technique failures are failures by the system builders to use, or to use

correctly, effective software development disciplines such as structured [or

object-oriented] analysis and design.

User contact failures are caused by an inability to communicate with the user

community.

Organizational failures result from an inability of the organizational structure

to support the system building process.

Technology failures are failures of acquired hardware or software utilized by

the system.

Although size failures can almost always be attributed to several of the other

categories, the root of the problem is that the system is too big. Big systems

are usually functionally complex and tend to push the system development

capabilities of an organization to or beyond its limits.

Failures to motivate workers and to maintain the morale of the system

building group are people management failures. The resulting lack of effort,

stifled creativity, and antagonistic attitudes have an impact similar to that of

internal organizational failures; only in this case, the fault lies not with the

organization but with the group leader.

Methodology failures are failures to perform the activities needed to build the

system: Unnecessary activities may be performed, needed activities may be

omitted, or activities may be performed incorrectly. Methodology failures may

be due to the lack of a formal methodology as a guideline to the system

builders, or to an overly rigid adherence to the adopted methodology.

■ Gregory E. Russell 53 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Planning and control failures encompass planning, scheduling, task

assignment, and tracking of results. Included here are vaguely defined

assignments, inadequate tools to depict plans and schedules, and failure to

track progress to insure that tasks are done.

Personality failures are clashes between people either within one system

building group or between group members (often the leader) and members of

an interfacing organization; the failure results from people disliking each other

enough to prevent them from doing their jobs. In the extreme, acts of sabotage

and vengeance may occur, but more often there is passive cooperation and

covert resistance.

The impact of these failures varies with the functions and assignments of the

individuals involved. They are rarely catastrophic, but often aggravate already

difficult situations.

Lawrence Putnam [Putnam92] alluded to these failures when he described

software managers who are not familiar with software development complexities:

... Software development process is hard to understand. It is particularly hard

for managers who are divorced from software technology. They can't picture

it, as they can a physical product in a drawing or prototype. To make matters

worse, their staffs are often not literate in the subject either.

Given the time restrictions under which top-level managers and their staffs

function, it will not be simple to provide what they need to know about the

software development process — not to design or program — but to function

effectively at their own level.

Putnam’s observation is not a rarity in the software industry; this is a common

occurrence. Most of the companies I have consulted with have two type of managers,

those with MBAs and those that have been successful in putting out fires. The first

usually doesn’t know a thing about software development; the second is usually a hacker

Project Demonstrating Excellence 54 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

who doesn’t care about utilizing proven software development methodologies. Roger

Pressman [Pressman92] observed the following about software managers:

Middle- and upper-level managers with no background in software are often

given responsibility for software development. There is an old management

axiom that states: “A good manager can manage any project.” We should add:

“ . . . if he or she is willing to learn the milestones that can be used to measure

progress, apply effective methods of control, disregard [software

development] mythology, and become conversant in a rapidly changing

technology.” The manager must communicate with all constituencies involved

with software development customers, software developers, support staff, and

others. Communication can break down because the special characteristics of

software and the problems associated with its development are misunderstood.

When this occurs, the problems associated with the software crisis are

exacerbated.

Software practitioners (the past generation has been called programmers; this

generation is earning the title software engineer) have had little formal

training in new techniques for software development. In some organizations a

mild form of anarchy still reigns. Each individual approaches the task of

“writing programs” with experience derived from past efforts. Some people

develop an orderly and efficient approach to software development by trial

and error, but many others develop bad habits that result in poor software

quality and maintainability.

One o f the major problems with software project management is estimating cost

and resources. This is due to three reasons, incomplete requirement elicitation, poor

software estimating methods, and complexity issues (which can be referred to as risks).

The first can be dealt with by effectively communicating with the customer or client

(although I don’t anticipate the problem disappearing altogether). The second reason is

slowly being resolved by software engineering researchers. Software project managers’

incomplete understanding of risks and poor estimating techniques are reflected in their

Gregory E. Russell 55 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

planned software project schedules. Initial project schedules are usually a ball-park

picture o f the manager’s conception of the entire project based on incomplete data. Ian

Sommerville [Sommerville92] described project scheduling as:

One of the most difficult tasks of software management. Typically, projects

break new ground. Unless the project being scheduled is similar to a previous

project, previous estimates are not a good basis for new project scheduling.

Different projects use different programming languages and methodologies,

which complicates the task of schedule estimation.

If the project is technically advanced, initial estimates will almost certainly be

optimistic in spite of endeavors to consider all eventualities. In this respect,

software scheduling is no different from scheduling any other type o f large

advanced project. New aircraft, bridges and even cars are frequently late

because of unanticipated problems. Schedules, therefore, must be continually

updated as better progress information becomes available.

There are several models to help the software project managers derive reasonable

software cost estimates. Most of these methods were described by Barry Boehm

[Boehm81] in 1981. There has been some improvement in the methods since then, but

generally his description of the methods are still valid today.

1. Algorithmic cost modeling — A model is developed using historical cost

information which relates some software metric (usually its size) to the

project cost. An estimate is made of that metric and the model predicts the

effort required.

2. Expert judgment (wideband-delphi) — One or more experts on the

software development techniques to be used and on the application

domain are consulted. They each estimate the project cost and the final

cost estimate is arrived at by consensus.

3. Estimation by analogy — This technique is applicable when other

projects in the same application domain have been completed. The cost of

Project Demonstrating Excellence 56 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

a new project is estimated by analogy with these completed projects.

Myers gives a very clear description of this approach

4. Parkinson's Law — Parkinson's Law states that work expands to fill the

time available. In software costing, this means that the cost is determined

by available resources rather than by objective assessment. If the software

has to be delivered in 12 months and 5 people are available, the effort

required is estimated to be 60 person-months.

5. Pricing to win — The software cost is estimated to be whatever the

customer has available to spend on the project. The estimated effort

depends on the customer's budget and not on the software functionality.

6. Top-down estimation — A cost estimate is established by considering the

overall functionality of the product and how that functionality is provided

by interacting sub-functions. Cost estimates are made on the basis of the

logical function rather than the components implementing that function.

7. Bottom-up estimation — The cost of each component is estimated. Ali

these costs are added to produce a final cost estimate.

There are several other methods that Boehm did not mention, function point,

feature points (similar to function points), and fuzzy logic.

To make a function-point estimate, you review the requirements and the count the

numbers of each type of function (input, output, inquiries, data files, interface) the

program will likely need. You then enter these numbers in a table and multiply them by

the weights (historically determined) to produce the total number of functions points in

each category. The function point sum is multiplied by a complexity factor. The

complexity factor is the sum of influence factors (for example, data communications,

performance, reusability distributed functions) multiplied by an adjustment factor

[Dreger89].

The function point procedure is not very intuitive. According to Watts Humphrey:

Gregory E. Russell 57 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

“As useful as they are, function points are not fully satisfactory for two

reasons. First, they cannot be directly measured and second, they are not

sensitive to implementation decisions.”

However, the function point method is backed by an international special-interest

group called, International Function Point Users Group (IFPUG). This group is

continually refining the method and providing guidelines and standards to those that are

interested.

Feature points were derived from function points by Capers Jones. Although, the

procedures are similar, Jones tried to overcome the direct measure problem by providing

a number of function-point conversion factors that permit you to count lines-of-code and

calculate the program’s likely function point content [Humphrey95].

Lawrence Putnam [Putnam92] described the fuzzy-logic estimating method,

where estimators assess a planned product and roughly judge how its size compares with

historical data on prior products. The problem with this method is that you need a

considerable amount of historical data. Another problem is the size of programming

applications has historically grown by about an order of magnitude every 10 years

[Humphrey95]. If your previous products are increasing in size, it makes product

comparisons very difficult.

Each estimating method has its merits and in some cases the project manager

should use two or more methods to overcome the deficiencies inherent in each method.

Lawrence Putnam [Putnam92] recommends:

To meet these various [estimating] needs requires multiple approaches.

At times only one approach is applicable. At other times several approaches

may be relevant. In the latter case the result of each approach is combined by a
*weighted statistical process, resulting in a bounded size estimate.

*

Two prim ary techniques are employed: Bayesian weighting and exponential smoothing.

Project Demonstrating Excellence 58 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

The purpose of these quantitative methods is to bound the size, determine the

degree of uncertainty of the estimate, and identify the amount of risk

associated with the estimate. The multiple approaches enable the organization

to view the sizing problem from different perspectives. The statistical

techniques provide a final estimate that is more narrowly bounded and

represents a lower degree o f risk than any single method would permit.

Continued use of the methods enables the organization to refine the estimate,

or bounds, as further information becomes available.

If significant changes take place from a previous estimate to the current one,

however, the exponential smoothing technique may not be sensitive enough to

compensate for the amount of the change. In that case, the new estimate

should be treated as a new starting point.

As the software project estimates become clearer, the project manager can then

start the planning processes. The software project plan is the result o f these processes.

The project plan identifies the project tasks (processes), resources, responsibilities, and

risks, and delivery products.

It is beyond the scope of this paper to discuss each attribute contained within the

software project plan. I am going to briefly discuss configuration management, quality

control / management, documentation, and project team issues.

Another major problem facing software development is version control and

development environment stability. These tasks are accomplished by the configuration

Bayesian weighting is an averaging technique that gives more weight to those expected values o f the size that have the
least amounts o f uncertainty. In other words, wild guesses are given less weight in arriving a t the final estimate than
reasonable, o r narrowly bounded, estimates. The degree o f uncertainty associated with any estimate is quantified by its
standard deviation.

This weighting technique is used both within each estimating method and to combine the results o f the different
methods. The result is that at each point in the estimating process the uncertainty associated with the estimate at that
point has been reduced. At the ultim ate combined estimate the uncertainty is at the m inim um consistent with the input
uncertainties. A low level o f uncertainty is indicative o f a low level o f risk.

Exponential sm oothing is a convergence technique that picks up growth or reducing trends and updates the estimate to
reflect those trends. As the software design changes, this technique enables the changes to pass sm oothly through the
software equation to the time-effort-resources estimates. It permits schedules, budgets, and staffing levels to be
updated during the project.

Gregory E. Russell 59 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

management team. Ian Sommerville [Sommerville92] describes the responsibilities o f the

configuration management (CM) team:

The role of the CM team is to ensure that changes are incorporated in a

controlled way.

In a large project, a formal document naming scheme should be established

and used as a basis for managing the project documents.

The CM team should be supported by a configuration database which records

information about system changes and change requests which are outstanding.

Projects should have some formal means of requesting system changes.

System building is the process of assembling system components into an

executable program to run on some target computer system.

When setting up a configuration management scheme, a consistent scheme of

version identification should be established.

System releases should be phased so that a release which provides new system

functionality is followed by a release to repair errors.

The team does a lot more than this. Basically, they control software,

documentation, and process definition releases, maintain software baselines (the previous

version or versions for software, documentation, standards, process definitions,

equipment environment), and distribute builds (completed software modules) to the

software system integration team.

Another important group, identified in the software project plan, is the quality

assurance team. As the name suggests, this team is responsible for assuring quality within

the project and software development organization. They assist the quality control

personnel, who are responsible for defect removal, and project managers. Unfortunately,

the quality assurance team is not one of the well-respected teams in the software

development organization. In most cases the role designated by management is wrong, or

the team members are either brand-new software engineers or, worst, assigned because

they are poor designers or programmers.

Project Demonstrating Excellence 60 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Lowell Arthur [Arthur92] had this observation:

Known software techniques make defect-free [quality] software possible.

Most software professionals, however, avoid doing all o f the things required

to achieve zero-defect software. “Too much structure,” they proclaim. “Too

much bureaucracy.”

The primary technique utilized by software practitioners is formal and informal

technical reviews. The reviews consist of inspections (this is an analysis technique that

relies on visual examination of development products) and walkthroughs (this is a

technique in which the designer or programmer leads one or more other members of the

development team through a segment of design or code that he or she has written). These

two review processes can eliminate more defects than testing the code. According to

Glenford Myers [Myers79]:

Inspections and walkthroughs have been found to be far more effective, again

because people other than the program's author are involved in the process.

These processes also appear to result in lower debugging (error correction)

costs, since, when they find an error, the precise nature of the error is usually

located.

Experience with these methods has found them to be effective in finding from

30% to 70% of the logic design and coding errors in typical programs.... Uses

of code inspections by IBM have shown error-detection efficiencies as high as

80% (not 80% of all errors, because we can never know the total number of

errors in a program, but in this case 80% of all errors found by the end of the

testing processes).

Lowell Arthur [Arthur92] observed:

Most software companies foolishly base all o f their defect efforts on finding

bugs once they're in the software. Computer testing to identify and remove

defects will find at most 70 percent of the defects. The number of defects that

slip through testing is a function of the number of defects in the software

Gregory E. Russell 61 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

when it is delivered for testing. The number of defects in the software when

delivered to testing is a direct function of the quality of the process used to

create the software. Testing can only uncover 70 percent of the latent defects

in the code. Inspections can remove 80 to 90 percent of the defects before

testing, but a good process will prevent defects from ever entering the product.

Arthur’s observation is extremely important. We need to eliminate the majority o f

software defects (requirements, design, code structure, code logic, etc.) before it ever

arrives for testing. It is impossible to find all the defects in the testing process. If we

eliminate the defects prior to testing (which are usually the defects that the test team can

not find) we will have a better product. I know of several software development

organizations, including the one I am now working at, that do not have a formal review

process in place, and in some cases do not feel it is important. These organizations

“know” that testing will find all the critical and severe defects that the coders and

designer placed in the code. What these organizations don’t realize is the time it takes to

uncover defects in testing. Glenford Myers [Myers92] discusses the time required to test

every logic path in a small module.

The number of unique logic paths through a program is astronomically large.

To see this, consider the trivial program represented in the following figure.

Project Demonstrating Excellence 6 2 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

> 20 times

The diagram is a control-flow graph. Each node or circle represents a segment

of statements that execute sequentially, possibly terminating with a branching

statement. Each edge or arc represents a transfer of control (branch) between

segments. The diagram, then, depicts perhaps a 10- to 20-statement program

consisting of a DO loop that iterates up to 20 times. Within the body of the

DO loop is a set of nested IF statements. Determining the number of unique

logic paths is the same as determining the total number of unique ways of

moving from point A to point B (assuming that all decisions in the program

are independent from one another). This number is approximately 1014, or 100

trillion. It is computed from 520 + 519 + ... + 51, where 5 is the number of paths

through the loop body. Since most people have a difficult time visualizing

such a number, consider it this way: if one could write, execute, and verify a

test case every five minutes, it would take approximately one billion years to

try every path.

Remember this is a 10- to 20-statement program. The number of paths for a one

million statement program would be impossible to calculate. Let’s just say that a testing

Gregory E. Russell 63 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

team cannot find every defect in a program. Inspections and walkthroughs help the testing

team by eliminating the defects that are usually the most difficult to find in testing. These

defects are the ones that usually kill the unsuspecting user.

Another quality problem is measurement. We do not know how to measure

software quality. According to Norman Fenton [Fenton91],

It would be difficult to imagine how the disciplines o f electrical, mechanical

and civil engineering could have evolved without a central role for

measurement. But it has been almost totally ignored within mainstream

software engineering. More often than not:

1. We still fail to set measurable targets when developing software

products. For example we promise they will be “user-friendly”,

“reliable”, and “maintainable” without specifying what these mean in

measurable terms. This prompted the assertion of Gilb:

Gilb’s principle of fuzzy targets: Projects without clear goals

will not achieve their goals clearly.

2. We fail to measure the various components which make up the real

costs of software projects. For example, we usually do not know how

much time was really spent on design compared with testing.

3. We do not attempt to quantify the quality (in any sense) of the

products we produce. Thus, for example, we cannot tell a potential

user how reliable a product will be in terms of likelihood of failure in a

given period of use, or how much work will be needed to port the

product to a different machine environment.

4. We still rely on purely anecdotal evidence to convince us to try yet

another revolutionary new development technology or tool.

Fenton continued with this discourse and provided some valuable insight on the

types o f measures that managers and software engineers can perform during the

development phases:

Project Demonstrating Excellence 64 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Managers:

• Need to measure the cost of various processes within software

production. For example, the process o f developing a whole software

system from the listing requirements stage to maintenance after

delivery has a cost which must be known in order to determine its

price for suitable profit margins.

• Need to measure the productivity o f staff in order to determine pay

settlements for different divisions

• Need to measure the quality of the software products which are

developed, in order to compare different projects, make predictions

about future ones, and establish baselines and set reasonable targets for

improvements.

• Need to define measurable targets for projects like how much test

coverage should be achieved and how reliable the final system should

be.

• Need to measure repeatedly particular process and resource attributes

in order to determine which factors affect cost and productivity.

• Need to evaluate the efficacy of various software engineering methods

and tools, in order to determine whether it would be useful to introduce

them to the company.

Engineers:

• Need to monitor the quality of evolving systems by making process

measurements. These might include the changes made during design,

or errors found during different reviewing or testing phases.

• Need to specify quality and performance requirements in strictly

measurable terms, in order that such requirements are testable. For

example a requirement that a system be “reliable” might be replaced

Gregory E. Russell 65 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

by “the mean time to failure must be greater than 15 elapsed hours of

CPU time”.

• Need to measure product and process attributes for the purpose of

certification. For example, certification may require measurable

properties of the product e.g. “less than 20 reported errors per p*test

site”, “no module more than 100 lines long”, or of the development

processes e.g. “unit testing must achieve 90% statement coverage”.

• Need to measure attributes of existing products and current processes

to make predictions about future ones. For example i) measures of

“size” of specifications can be used to predict “size” o f the target

system, ii) predictions about future maintenance “blackspots” can be

made by measuring structural properties of the design documents, and

iii) predictions about the reliability of software in operational use can

be made by measuring reliability during testing.

The software managers and software practitioners need to document their

measurement techniques and results. This is another problem with the current software

development methods, poor documentation. Ambiguous documentation or no

documentation at all will decrease the likelihood of ever managing the software

processes. If you don’t know what you have done during the process, how can you

recognize the possible eventualities when you start a new project. Lem Ejiogu [Ejiogu91]

observed:

The goal of documentation is communication both during and after the

project. During the project, documentation aims at eradicating

misunderstanding or distortion of ideas by recording exactly what is visibly

accomplished or perceived but yet deferred. After completing the project,

documentation “records the history of development, serves as a tutorial guide

to system operation, demonstrates that the program works, and provides a

means for maintenance and evaluation of obsolete or amendable portions of

Project Demonstrating Excellence 6 6 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

the system.... To be effective, documentation has to have purpose, content, and

clarity.”

This, in a nutshell, summarizes the problems of documentation in software

engineering. If there were nothing like maintenance, documentation would

have been, perhaps, less prominent than it is now. But maintenance is an

essential and on-going activity of any engineering discipline.... Some

installations have the good habit of not keeping or updating (yes, doing

maintenance on) their documentation. This “sin” is aggravated by the turnover

of maintenance professionals.

Documentation is a discipline that is extremely important for the production of

high quality software. This is an activity that the project manager must encourage

throughout the software development effort. Although, most software managers and

practitioners look upon documentation as the less glamorous activity.

Documentation would not be a problem, if the software managers and

practitioners understood its importance to the software organization. Of course, some do

know this and don’t care because they will not be working with the maintenance team.

They have the attitude of let’s get the thing working so we can go onto the next project. A

good manager can overcome this difficulty if he fully understands group dynamics and

team politics. If the software practitioners (engineers), working as part o f the team, better

understood group dynamics they can achieve more than they can working alone.

According to Ian Sommerville [Sommerville92]:

An understanding of group dynamics helps software managers and engineers

working in a group. Managers are faced with the difficult task of forming

groups. They must ensure that the group has the right balance in both

technical skills and experience and in terms of personalities.

Sommerville also added”

Software engineers working in groups can achieve better results and more

harmonious working conditions if they understand how the group members

Gregory E. Russell 67 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

interact and how the group, as a separate entity, takes its place within an

organization.

Sometimes individuals working in a group work well together and sometimes

they clash so dramatically that little or no productive work is possible.

Sommerville went on to explain the individual orientation types:

Very roughly, individuals in a work situation can be classified into three

types:

1. Task-oriented — This type is motivated by the work itself. In

software engineering, they are technicians who are motivated by the

intellectual challenge of software development.

2. Self-oriented — This type is principally motivated by personal

success. They are interested in software development as a means of

achieving their own goals. Attaining these goals may mean that they

will move away from technical software development into

management.

3. Interaction-oriented — This type of individual is motivated by the

presence and actions of co-workers. Until recently, there probably

weren't many individuals of this type involved in software

development because of the apparent lack of human interaction

involved in the process. However, as software engineering becomes

more user-centered, interaction-oriented individuals may be attracted

to software development work.

Besides these orientation types there are four other “attitude” types; the dabbler,

hacker, compulsive, and master. Lowell Arthur [Arthur93] defined the four types plus

explained how masters become masters:

Dabblers go from one thing to another, never resting long enough to become

proficient at any one thing.

Project Demonstrating Excellence 68 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Hackers develop a low level of proficiency and then are content to stay

mediocre the rest o f their lives. All software “hackers” fall into this category.

The programmer whose programs are always in trouble; the software “genius”

who runs around fighting fires; and the manager who puts up with this type of

behavior are all hackers.

Compulsives are not content to be on the plateau of learning. They cram

course after course into their lives. Ultimately, they just bum out.

Masters, on the other hand, know that the path to mastery is a journey. To

become a master, they must always have a “beginner's mind” that is open and

receptive to new learnings. They rise to the first level o f skill and then they are

ready to practice until they experience the next burst of learning and rise to a

new level. Mastery is the path of kaizen — continuous incremental

improvement in our skills and abilities. Masters recognize and understand

kaizen and Shewhart’s Plan, Do, Check, and Act (PDCA) method because

they have done it all of their lives to achieve mastery.

There are five keys to software mastery — instruction, practice, surrender,

intent, and pushing the envelope.

• Get instruction. Quality begins with training and ends with training.

• Practice. Learning the quality tools requires practice.

• Suspend your disbelief about what will or won't work, and surrender to

your practice.

• Develop a clear intent to be the best. Intent is not hope. Hope offers

only the flimsy wish to become excellent. Intent is a clear, definite

desire and direction.

• Take a risk, push the outside of the envelope. Once firmly grounded in

the basics, masters push the limits o f what they know to enable them to

leam more about what works and what doesn't.

Gregory E. Russell 69 Project Demonstrating Excellence

j with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

The software manager and software engineer master is one who is disciplined,

who have vision, known capability, and in most cases the potential capability of their

peers. The masters practice individual process management. They strive to be the best

and at the same time share what they have learned with others so that they too can

become masters. Watt Humphrey [Humphrey95]:

We each have responsibilities to others and to ourselves. We need to

understand our own abilities, to apply them to our assigned tasks, to manage

our weaknesses, and to build on our strengths. While we should do this as part

of our everyday work, it is also our responsibility to ourselves. We are each

blessed with unique talents and opportunities. We need to decide what to do

with them.

Consistent high performance takes persistent effort, an understanding of your

own abilities, and a dedication to personal excellence. World-class runners

know their best time for a mile, and they know the world record. They know it

would make no sense to strive for a 3:00 mile but that 3:40 may soon be

achievable. Decades ago, the 4:00 mile was thought beyond human capability.

Roger Bannister proved that wrong in 1954. While beating a world record is

more challenging than ever before, people keep doing it. They don't do it

blindly, however. They develop aggressive personal goals and work

ceaselessly to achieve them. When they achieve them, they then pick more

aggressive goals and start all over again.

The software industry is seeking out these masters, jot for their wisdom,

dedication, insight, and capability to motivate and train others to be masters. No, they

seek them out, to help put the organization’s fires out. The software industry is still under

the illusion that if you find the best software engineers, they will produce the best work.

Unfortunately it doesn’t work that way. According to Watts Humphrey [Humphrey95]:

There is a common view that a few first-class artists can do far better work

than the typical software team. The implication is that they will know

intuitively how to do first-class work, so no orderly process framework will be

Project Demonstrating Excellence 70 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

needed. If this were true, one would expect that those organizations who have

the best people would not suffer from the common problems of software

quality and productivity. Experience, however, shows that this is not the case.

A few o f the nation's leading software organizations have consistently hired

the top graduates from the best computer science schools. They are thus

staffed with the best available people, yet their programming groups have

many of the same problems that plague everyone else. It seems that the super

programmer approach requires better people than are available, even from our

leading universities. While this may be a theoretical solution, it is clearly not a

practical one. Attracting the best people is vital, but it is also essential to

support them with an effectively managed software process.

Software organizations that use “first-class” software engineers without an

effective managed software process are operating in a pure chaotic environment. These

organizations perceive that they have control of their software production, but it is only a

smoke screen. Watts Humphrey earlier in Humphrey89 stated that software organizations

will not survive in the 90s or the earlier part o f the next century without a managed

software process. If these organizations do not evolve their software development

processes into mature managed processes, they will not able to compete with other more

mature organizations. They will disappear as did the automobile manufactures in the late

1960s and 1970s.

Today’s software organizations need to be aware of process engineering and

process management which includes risk assessment and risk management. The

“traditional” management styles used the last few decades will not work with the rapid

advances in technology and communications. Software organization need to understand

the whys and hows of process management and how to move from current process

models (which are not working) to mature process models.

Rosalind Ibrahim [Ibrahim95] expanded on this by discussing problems and

possible solutions:

Gregory E. Russell 71 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Today's software organizations are striving to remain competitive and healthy.

One path to providing a competitive edge lies in establishing an organizational

culture driven by quality aspirations and continuous improvement. For such

organizations it is necessary that software engineers and managers are

properly equipped to implement improvements and changes. The challenge for

educators and trainers is to ensure that adequate knowledge and skills are

acquired so that organizations can make rational decisions and carry them out

effectively, i.e., to ensure that the organization possesses a solid base of

competency in process improvement.

Software engineering organizations tell us that they encounter obstacles to

process improvement such as the following:

• “lack of awareness and understanding”

• “inadequate training”

• “misunderstanding of the importance of process improvement”

Some of the needs and recommendations we have heard include the following:

• “We must educate people on the process so that they understand why

we're doing this as opposed to just getting a good grade.”

• “Educate/train people from the top down and from the bottom up.”

• “Get process improvement exposed more in commercial/educational

organizations.”

• “Include process improvement in formal software education

curriculum.”

We hope to help overcome these obstacles and start meeting these needs by

examining what process improvement education and training entails.

Process improvement is an emerging topic in software engineering education

and training. It is so new that the body of knowledge is still evolving, yet there

are considerable data available regarding what one might need to know. They

Project Demonstrating Excellence 72 Gregory E. Russell

1 with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

can be found scattered in various courses, tutorials, workshops, documents,

articles, curricula, standards, texts, etc. They are known by those who are

working on process improvement in the field, but they have not been compiled

to help software engineering educators and trainers offer the requisite

knowledge and skills their students need.

Another software engineering expert, Neal Whitten [Whitten95] also described

today’s software development organization predicament:

Many software development organizations do not fully embrace a defined,

repeatable, and predictable software development process. Without a

disciplined process, they usually face a significantly increased risk in

predicting and controlling the critical factors of schedule, cost, function, and

quality. So why, then, do many organizations operate without an acceptable

software development process?

In some cases the organization may have currently defined processes, but

those processes are ineffective for one or more of the following reasons:

• Not comprehensive enough: They do not already define all o f the

activities that apply to all new projects.

• Overly complex: They require too much time and skill to comprehend

and apply.

• Not flexible: They are not easily tailored to meet the unique needs of new

projects.

• Not “owned”: There is weak or no buy-in from the project’s members.

• Not understood: The project’s members have not been trained

sufficiently.

• Not continuously improved: Lessons learned from past projects are not

used to improve the current processes.

Gregory E. Russell 73 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

• Not enforced: The guidelines are there, but the project leadership lacks

the discipline to enforce them.

“Process improvement” and “continuous improvement” are terms that are used to

describe organizations that are in the process o f maturing from ad-hoc operations to

repeatable and defined operations. Rosalind Ibrahim [Ibrahim95] continued with her

discussion by describing the concepts of process maturity:

Processes can be characterized in terms of capability, performance, and

maturity.

Software process maturity. The extent to which a specific process is

explicitly defined, managed, measured, controlled, and effective. The

maturity of an organization's software process helps to predict a project's

ability to meet its goals.

Software process capability. The range of expected results that can be

achieved by following a software process. A more mature process has

improved capability (a narrower range of expected results).

Software process performance. The actual results achieved by following

a software process. A more mature process has improved performance

(lower costs, lower development time, higher productivity and quality) and

performance is more likely to meet targeted goals.

M aturity model. A representation of the key attributes o f selected

organizational entities which relate to the progress of the entities towards

reaching their full growth or development.

Institutionalization. Building an infrastructure and a corporate culture

that supports the methods, practices, and procedures of the business so that

they endure after those who originally defined them have gone; an

organization institutionalizes its software process via policies, standards,

and organizational structures.

Project Demonstrating Excellence 74 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Edward Deming expanded upon Shewhart’s work and started the process

improvement and maturity practices in Japan during the 1950s. He called those processes

that were understood and documented as “defined processes.” Deming [Deming86]

defined these processes as “something everyone can communicate about and work

toward.” Define processes provide the following benefits:

• They enable effective communication about the process among users,

developers, managers, customers, and researchers.

• They enhance management's understanding, provide a precise basis for

process automation, and facilitate personnel mobility.

• They facilitate process reuse. Process development is time consuming

and expensive. Few project teams can afford the time or resources to

fully define the way they will work. They can save both by using the

standard reusable elements a defined process provides.

• They support process evolution by providing an effective means for

process learning and a solid foundation for process improvement.

• They aid process management. Effective management requires clear

plans and a precise, quantified way to measure status against them.

Defined processes provide such a framework.

These enablers cannot be put in place in a traditional management system.

Deming’s management principles are quality management. His management principles

were primarily developed for manufacturing organizations. He also incorporated

Shewharf s work of the 1930s into his management system.

Shewhart’s classical management strategy provides a orderly approach to

controlling and improving quality by studying a process and analyzing its performance

through four steps: plan, do, check, and act. This strategy can be applied at various

process levels, and several improvement approaches are derived from this basic cycle.

Plan. Define the problem; state improvement objectives.

Gregory E. Russell 75 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Do. Identity possible causes of the problem; establish baselines; test

change.

Check. Evaluate; collect data.

Act. Determine effectiveness; implement system change.

Deming’s and Shewhart’s work is incorporated in a process model that is just

starting to take the software industry by storm. The researchers for this model have

researched hundreds of software development organizations, They looked for the

common denominator for all the successfully completed projects. What they found were

18 key process areas with over 250 activities. This research was sponsored by the

Department of Defense and performed by the Software Engineering Institute, Carnegie

Mellon University, Pittsburgh, Pennsylvania. The model is called the Software -

Capability Maturity Model or CMM. Rosalind Ibrahim [Ibrahim95] describes:

The CMM applies process management and quality improvement concepts to

software development and maintenance. It is a model for organizational

improvement and serves as a guide for evolving toward a culture of

engineering excellence. The CMM provides the underlying structure for

software appraisals assessments and evaluations. It offers a staged

improvement structure based on the quality principles o f Deming, Juran, and

Crosby.

Critical concepts. Software process: process capability, process

performance, process maturity, and institutionalization.

Structure and components of the CMM. Maturity levels indicate

process capability and contain key process areas. Key process areas

achieve goals and are organized by common features. Common features

address implementation or institutionalization and contain key practices.

Key practices describe infrastructure or activities that contribute to

satisfying the goals of that key process area.

Project Demonstrating Excellence 76 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

The maturity levels. Each level is a well-defined evolutionary plateau

toward achieving a mature software process; each level builds a

foundation for succeeding levels to use to implement process effectively

and efficiently.

Level 1: Initial. Process is informal and ad hoc; performance is

unpredictable.

Level 2: Repeatable. Project management system is in place;

performance is repeatable; and there is a disciplined process.

Level 3: Defined. Software engineering and management processes

are defined and integrated; there is a standard, consistent process.

Level 4: Managed. Product and process are quantitatively

controlled; there is a predictable process.

Level 5: Optimizing. Process improvement is institutionalized;

there is a continuous improvement process.

The CMM has the framework to provide the foundation to establish a well

researched and proven process improvement methodology into a software development

organization. In fact, the model itself is dynamic and improving with time. The Software

Engineering Institute was established to provide software engineering services to

Department of Defense organizations, but it is now providing this same service to

commercial software development organizations.

This paper provided extensive coverage on what is wrong with our software

organizations. Before we go on to how and why software organizations must change the

way they do business, I would like to add this description of a “real” project manager by

Tom DeMarco [DeMarco87].

In my early years as a developer, I was privileged to work on a project

managed by Sharon Weinberg now president o f the Codd and Date

Consulting Group. She was a walking example o f much o f what I now

think o f as enlightened management. One snowy day, I dragged m yself out

Gregory E. Russell 77 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

o f a sickbed to pull together our shaky system fo r a user demo. Sharon

came in and found me propped up at the console She disappeared and

came back a few minutes later with a container ofsoup. After she'd poured

it into me and buoyed up my spirits, I asked her how she found time for

such things with all the management work she had to do. She gave me her

patented grin and said, "Tom, this is management. ”

Sharon knew what all good instinctive managers know: The manager's

function is not to make people work, but to make it possible for people to

work.

Organizational Evolution

Chaos, is the tar pit Fred Brooks [Brooks82] described in “The Mythical Man-

Month.” The tar pit turned out to be an apt analogy because so many extinct species of

animals can now be found in the La Brea tar pits, and those software development

organizations that remain in chaos will ultimately drag themselves and their company

down into the software tar pit. Chaos causes cost overruns and project failures and

customer anger and alienation. At this point, managers and programmers don't trust each

other; fire fighting reigns supreme, and there is no time to think about how to do things

better. It seems that the software development organizations keep slipping back into the

tar pit. Software creation and evolution demands that these organizations begin pulling

themselves up out of the tar pit and slowly, one stair at a time, begin moving up the

stairway to order and software excellence, a world-class organization.

Software development organizations need to look within the organization to find

the resources and skills necessary to become a world-class organization. Lowell Arthur

[Arthur93] described the primary reason for change:

To maximize productivity and quality, we will need to reduce the causes of

poor quality: procedures and methods, materials, environment, people, and

external factors.

Project Demonstrating Excellence 78 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Arthur continued with a description of the key components in any software

development organization, people, process, and technology:

In our flutter from one silver bullet to the next, in our search for a savior or a

magic wand, we have overlooked the obvious or pooh-poohed them as too

simple. We must become more like the tortoise and less like the hare; we must

seek continuous progress toward our goal. Then, in our journey, if we run

across a silver bullet or a magic wand, we'll know what to do with it.

To climb to the top of the stairway to software excellence, we must implement

the following key elements of people, process, and technology:

People We must establish several key specialist groups:

• Quality improvement specialists to get quality rolling

• A process team to improve our processes

• A reengineering team to continuously improve our software

and data

• A measurement team to see how we're doing

• An estimating team to improve our estimates

Process We need methods that must be continuously improved to reduce

our time-to-market for applications, products, and services:

• A flexible development methodology

• A defined evolution methodology

Technology We need:

• A full-blown maintenance workbench including re-engineering

tools

• A fully integrated development workbench that supports the

methodology

Gregory E. Russell 79 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

• A change management system

• A suite of measurement tools

Capers Jones [Jones91] provided this observation as a consultant to many Fortune

500 organizations:

These five steps to software quality control have been observed in the course

of software management consulting in leading corporations:

Step 1 Establish a software quality metrics program

Software achieved a notorious reputation during the first 45 years of its

history as the high-technology occupation with the worst track record in

terms of measurements. Over the last 10 years, improvements in

measurement technology have enabled leading-edge companies to

measure both software quality and productivity with high precision.

Quality measurement is a critical factor in high-technology products, and

all the companies which have tended to become household words have

quality measurement programs: DEC, Hewlett-Packard, IBM, and many

others. The lagging enterprises which have no software measures also

have virtually no ability to apply executive control to the software process.

Step 2 Establish tangible executive software performance goals

Does your enterprise have any meaningful software quality or productivity

goals operational? The answer for many U.S. companies would be no, but

for leading-edge companies such as IBM and Hewlett-Packard it will be

yes. Now that software can be measured, it is possible to establish

tangible, pragmatic performance goals for both software quality and

productivity. Since the two key aspects of software quality are defect

removal efficiency and customer satisfaction, reasonable executive targets

would be to achieve higher than 95 percent efficiency in finding software

bugs and higher than 90 percent “good” or “excellent” customer

satisfaction ratings.

Project Demonstrating Excellence 80 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Step 3 Establish meaningful software quality assurance

One of the most significant differences between leading and lagging U.S.

enterprises is the attention paid to software quality. It can be strongly

asserted that the U.S. companies that concentrate on software quality have

higher productivity, shorter development schedules, and higher levels of

customer satisfaction than companies that ignore quality. Since the steps

needed to achieve high quality include, both defect prevention and defect

removal, a permanent quality assurance organization can facilitate the

move toward quality control.

Step 4 Develop a leading-edge corporate culture

Business activities have a cultural component as well as a technological

component. The companies that tend to excel in both market leadership

and software engineering technologies are those whose corporate cultures

reflect the ideals of excellence and fair play.

As Tom Peters has pointed out in his landmark book, In Search o f

Excellence, the truly excellent enterprises are excellent from top to bottom.

If the top is not interested in industry leadership or doesn't know how to

achieve it, the entire enterprise will pay the penalty.

Step 5 Determine your software strengths and weaknesses

More than 200 different factors can affect software productivity and

quality; they include the available tools and workstations, the physical

environment, staff training and education, and even your compensation

plans.

This step is logically equivalent to a complete medical examination in a

major medical institution. No physician would ever prescribe therapies

without a thorough examination and diagnosis of the patient. The same

situation should hold true for software: Do not jump into therapy

Gregory E. Russell 81 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

acquisition without knowing what is right and wrong in all aspects of your

software practice.

The last step is very important. Before you can improve, you must know your

current capabilities. For a software development organization, this means performing a

process assessment to determine the capabilities and also to establish a baseline.

According to Watts Humphrey [Humphrey89]:

Assessments are done:

• To learn how the organization actually works

• To identify its major problems

• To enroll its opinion leaders in the change process

The assessment team leader should be someone with considerable software

experience, the ability to lead small groups and the ability to convincingly

present the results. The assessment team members should all be experienced

software developers.

Senior management must assign sufficient priority to the assessment and

improvement effort, or adequate resources will not be assigned and no

significant actions will likely result.

Senior management sponsorship is extremely important. However, it is very

difficult to overcome comfort zones and old habits. Some senior managers recognize that

change is important for others, but not for themselves. Dr. Dennis Jaffe and Dr. Cynthia

Scott (Building a Committed Workplace: An Empowered Organization as a Competitive

Advantage) [Ray93] discussed the underminers that occur during organizational

transformation:

Many organizations see change as something that can be declared, and

implemented without much difficulty. They are still operating on a 19th

century view of human nature, where people are motivated by appropriate

reward and punishment. With money, or the threat of termination, people will

Project Demonstrating Excellence 82 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

go along. Managers assume that if they order people to change, they will.

They do not recognize the tremendous internal struggle, the emotional

dynamics, the upheaval, and the nature of the learning process that

organizational renewal poses for individual employees. Viewing change from

the executive perspective, a study of top executives found that 80% felt their

companies had to change. However, only 20% felt that they had to change.

People see the need for change, but not the immensity of the personal and

professional disruption it entails.

Ironically, many of the actions of top managers actually increase alienation,

anger, frustration and add to the confusion. They say they want empowerment,

but intentionally or most often unintentionally, they produce the opposite.

Some of the common underminers of large organizational transformation

include:

1. Incongruence between the stated goals and what they do (e.g., act

directive and controlling, while asking for empowerment).

2. Emotional Illiteracy, not understanding the complex emotional dynamics

of people faced with drastic and total shifts in the nature of their work.

3. I Don't Have to Change, “They” Do. Feeling that the leader is an

exception, and not available and open to learning.

4. Not Giving Up Control. Empowerment is accompanied by trust, rooted in

understanding that the leader alone can't solve the problems. Employees

need to be allowed to come up with innovations, and trust in their

goodwill.

5. Isolation. The leader doesn't come out of his office and doesn't really seek

out and listen to distressing information from employees. One of the

easiest ways leaders maintain illusions is by staying on the phone with the

central office, traveling a lot, and relying on subordinates to tell them

Gregory E. Russell 83 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

what's going on. The essence of this behavior is fear of listening, and

inability to manage people in distress.

6. No Models of New Behavior — People can't be ordered to change, give

up control, or take more responsibility, if they have never learned how to

do it. People need to see and practice new models o f behavior, and they

need time to leam, and space to experiment and even make mistakes.

7. Impatience— Many promising programs are discontinued just as they

are on the verge of payoff because the management feels it isn't working,

or worse, they find a new fad or program and move on to that. The key

factor in successful change seems to be persistence in a direction, with

prudent feedback and course correction along the way.

8. Middle Management Entrenchment — Middle managers are an

endangered species, and in many change efforts they are the most

threatened They are expected from above to produce results, and they feel

the pressure of newly empowered, newly competent people from below

Under threat, they dig in. They need support, security, and help in learning

new ways.

9. Failure to Understand People's Needs for Psychological Security —

Change is terrifying and the company needs to provide some form of

psychological security. That does not mean job security, which doesn't

exist, but at least offer clear information on what is happening, options and

possibilities, and then allowing people the time to move through the

phases of transition.

Those who fall into these traps have elaborate theories o f who's to blame:

unmotivated employees, lack of resources, corporate policies, bad

competitors, or the economic pressures. But the truth, which they deny and

avoid, is that the major obstacle to change in many large companies is the lack

of self-awareness in top management, their lack of capacity to see that they

Project Demonstrating Excellence 84 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

themselves need to change in ways they at first do not fully comprehend, that

they need to let go o f control and allow the power of the people below them to

grow.

Empowerment requires a deep transformation of management style. Managers

need to shift their attention from other people to themselves. It takes time,

conscious and careful planning, and a series of steps that teach people new

ways and move toward new structures.

Dr. Jaffe and Scott discuss the benefits of empowerment in an organization.

However, most of the organizations that I have consulted with do not fully understand the

“empowerment” concept. Some organizations confuse the term with delegation and

permissiveness. In some cases responsibility is delegated without authority, and this is

called empowerment. In other cases individuals are “empowered”, yet are penalized for

taking appropriate risks. This subject is discussed more by Jim McCarthy [McCarthy95]:

Although I long for another word to describe [empowerment] because

“empowerment” has become so debased in contemporary usage,

empowerment by any name has to be a central value in any group creating

intellectual property. We often confuse permissiveness with empowerment.

But enabling people to do whatever they think best is very different from

enabling them to think and do their best.

And to empower someone is to enable them to be their best, is to free them

from the infinitely varied kinds of blockages that tend to plant themselves in

the path of accomplishment in the untended organization. Freedom is the

cornerstone of empowerment, freedom to develop and apply judgment,

freedom to think and say what needs thinking and saying, freedom to take

risks without extraneously punitive consequences.

Empowerment is the result of teaching and learning, not of neglect and

anarchy. For a manager to say to a subordinate, “This is your decision” is

empowering only when the manager has provided and continues to supply

Gregory E. Russell 85 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

what's needed to make a good decision — training, information, adequate

resources of whatever stripe. Otherwise, such a delegation is really a

dereliction.

If everybody is empowered, how are decisions made when there's conflict?

This is really more a theoretical than a practical problem. In a properly

empowered environment, the situation is not anarchic and confrontational but

is meritocratic. As people become secure, they abandon much of the

foolishness that stems from weak egos. Devoid of ego pathology, most design,

development, and organizational decisions are pine resource tradeoffs. An

empowered team is capable of analyzing the pluses and minuses of all

potential approaches and of optimizing in the interests of a particular shared

goal or vision. There is no right approach or wrong approach. There is a

continuum of trade-off among features, resources, and time.

Along the same train of thought as Jim McCarthy, Tom Gilb [Gilb88] established

a Bill o f Rights that formally establishes the rights of empowered individuals:

1. You have a right to know precisely what is expected of you.

2. You have a right to clarify things with colleagues, anywhere in the

organization.

3. You have a right to initiate clearer definitions o f objectives and strategies.

4. You have a right to get objectives presented in measurable, quantified

formats.

5. You have a right to change your objectives and strategies, for better

performance.

6. You have the right to try out new ideas for improving communication.

7. You have the right to fail when trying, but also to kill failures quickly.

8. You have a right to challenge constructively higher-level objectives and

strategies.

Project Demonstrating Excellence 86 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

9. You have a right to be judged objectively on your performance against

measurable objectives.

10. You have a right to offer constructive help to colleagues to improve

communication.

As important as it is for software development organizations to change with the

times, the senior managers and software managers and practitioners will not participate

with the change if they do not see value for themselves. As Stephen Covey [Covey94]

said:

Make it comfortable to leave the comfort zone and uncomfortable to stay in it.

The other important factor in change is that the individuals must feel that they are

part of the change; that they contributed value to the process. This requires managers with

insight and vision. As a great Chinese philosopher, Lao-Tzu stated:

The bad leader is he who people despise. The good leader is he who the

people praise. The great leader is he who the people say, “We did it

ourselves.”

The great leader will accept and promote the changes required and motivate and

excite their staff about the changes. There are recommended steps to bring about the

organization’s evolution. These change requirements are described by Watts Humphrey

[Humphrey89]:

[There are] six requirements for software process change:

1. Sell top management

Significant change requires new priorities, additional resources, and

consistent support. Senior managers will not provide such backing until

they are convinced that the improvement program makes sense.

2. Get technical support

This is best obtained through the technical opinion leaders. Every

organization has a few technical professionals whose opinions are widely

Gregory E. Russell 87 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

respected. When they perceive that a proposal addresses their key

concerns, they will generally convince the others. On the other hand, when

the technical community is directed to implement something they don't

believe in, it is much more likely to fail.

3. Involve all management levels

While the senior managers provide the resources and the technical

professionals do the work, the middle managers make the daily decisions

on what is done. When they don't support the plan, their priorities will not

be adjusted, and progress will be painfully slow or nonexistent.

4. Establish an aggressive strategy and a conservative plan

While senior management will be attracted by an aggressive strategy, the

middle managers will insist on a plan that they know how to implement. It

is thus essential to be both aggressive and realistic. The strategy must be

visible, but the plan must provide frequent achievable steps toward the

strategic goals.

5. Stay aware o f the current situation

It is essential to stay in touch with current problems . Issues change, and

elegant solutions to last year's problems may no longer be pertinent.

While important changes take time, the plan must keep pace with current

needs.

6. Keep progress visible

People easily become discouraged if they don't see frequent evidence of

progress. Advertise success, periodically reward the key contributors, and

maintain enthusiasm and excitement.

As the software development organizations make these changes they will begin to

recognize their potential to produce reliable and high quality products faster without

excessive effort by the software development staff.

Project Demonstrating Excellence 88 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

“To Go Where No One Has Gone Before”

The key to future software development efforts is measurement. According to

David Card [Card90]:

Measurement will become more important in the future of software

engineering. Current software research focuses on developing alternative life

cycle paradigms and on design automation through expert systems and

artificial intelligence. However, the success of both endeavors depends to

some extent on improved measures.

Reliable measures also are essential to design automation. Major software

research centers are investing their long-term hopes for software process

improvement in artificial intelligence and expert systems. However, no

process can be automated before it is well understood, measurable, and

controllable. We have to achieve “natural” intelligence before “artificial”

intelligence becomes meaningful. Design automation cannot occur without

effective design measurement techniques.

We have to know ourselves before we can grow and expand our abilities. Solid

measurement techniques will allow the software development organization to know itself

and expand its capabilities.

Peter Senge [Senge90] discussed a direction that few software engineering

researchers are pursuing, software development simulations. Peter Senge calls this

simulation “microworld.” Although, Senge’s view of the microworld may not be entirely

suitable for the software industry, it is, however, plausible. After all, twenty years ago no

one imagined the capabilities of the flight simulators we are now using. Back then if you

told a pilot that he could obtain a commercial pilot license without setting foot in a real

aircraft, he or she would have laughed at you. Today this is common place. The aircraft

simulators do a better job training flying techniques than the actual aircraft. Senge’s

microworlds could do the same with the use of expert systems and “artificial”

intelligence. This is Peter Senge’s [Senge90] view of the microworld:

Gregory E. Russell 89 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Microworlds enable managers and management teams to begin “learning

through doing” about their most important systemic issues. In particular,

microworlds “compress time and space” so that it becomes possible to

experiment and to learn when the consequences of our decisions are in the

future and in distant parts of the organization.

Senge continued by describing the issues that are now being studied by his

research team and others:

Integrating the microworld and the “real” world

The unique power of microworlds lies in surfacing hidden assumptions,

especially those lying behind key policies and strategies, discovering their

inconsistency and incompleteness, and developing new, more systemic

hypotheses for improving the real system. How can such learning lead to

more carefully designed “real life” experiments to test insights gained in

microworlds, and will these experiments, in turn, allow managers to

design better microworlds?

Speeding up and slowing down time

In microworlds, the pace of action can be slowed down or speeded up.

Phenomena that stretch out over many years can be compressed to see

more clearly the long-term consequences of decisions. We often also want

to slow down the interactions among members of the team, so that they

can see subtle ways in which they shut down inquiry or discourage testing

of different views. Will repeated experiences in microworlds expand

managers’ perceptual “time window,” making them both more perceptive

of slow, gradual organizational and business changes and of very rapid

interpersonal interactions and thought processes?

Compressing Space

In microworlds, managers can learn about consequences o f actions that

occur in distant parts of the system from where actions are taken. Will this

Project Demonstrating Excellence 90 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

help them recognize such consequences in real life and make “the

systemic choice”?

Isolation of variables

In laboratories, scientists can eliminate intruding outside variables and

carefully simplify the complexity o f real processes. The real world of

management offers no such control; but a microworld is a controlled

environment, in which experimenters can ask “What if?” questions about

outside factors. Microworlds also let you bring in potential outside factors

that have not yet taken place in reality — for example, “Suppose

regulators forced us to put a ceiling in rates: what might happen to us?”

Will microworlds help managers learn to disentangle complex interactions

in real setting?

Experimental orientation

Microworlds let teams experiment with new policies, strategies, and

learning skills. Actions that cannot be reversed or taken back in real

business can be redone countless times in the microworld. Over time, will

microworld learning make management teams more open to consider and

test wide ranges of hypotheses, and less likely to get “locked in” to

particular ways of looking at problems?

Pauses for reflection

Microworld experiments have revealed just how nonreflective most

managers are. Despite the ready access to information and controlled

experimentation in the computer environment, managers tend to jump

from one strategy to another without ever stating clearly their assumptions

and without ever analyzing why strategies produce disappointing results.

Will learning to explicate assumptions and reflect on outcomes of

experiments in microworlds inculcate habits that carry over to real life

decision making?

Gregory E. Russell 91 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Theory-based strategy

The business practices of most firms are firmly “anchored” to standard

industry practices. By contrast, systems thinking and microworlds offer a

potentially new basis for assessing policy and strategy. They lead to

“theories” of critical business dynamics which can then clarify the

implications of alternative policies and strategies. ... Will continued

development of microworlds lead to a new approach to strategy

development, that is less vulnerable to accepting implicit mediocre

industry standards?

Institutional memory

“Learning builds on past knowledge and experiences — that is, on

memory,” wrote Ray Stata, CEO of Analog Devices, in 1989 in the Sloan

Management Review. “Organizational memory must depend on

institutional mechanisms,” rather than on individuals, Stata says, or else

you risk, “losing hard-won lessons and experiences as people migrate from

one job to another.” Will continued research on micro worlds and “generic

structure” theories of business dynamics lead to a “library of

microworlds”? And will such a library, when tailored to the needs o f a

particular firm, create a significant new form of organizational memory?

The microworlds of today are rough precursors of what micro worlds of the

future will be like. All the examples cited above would have been impossible

only four or five years ago, before the current generation of personal

computers with advanced graphics capabilities. The coming years will see

dramatic advances in both the availability and capabilities o f microworlds for

managers.

Peter Senge’s final comment about the future of microworlds is exciting:

In the learning organizations of the future, microworlds will be as common as

business meetings are in today’s organizations. And, just as business meetings

Project Demonstrating Excellence 92 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

reinforce today’s focus on coping with present reality, microworlds will

reinforce a focus on creating alternative future realities.

Another view of the future is described by Roger Pressman [Pressman92]:

As hardware and software technologies advance, the very nature o f the

workplace will change. The following scenario provides one vision o f a

software engineer's work environment during the first decade of the twenty-

first century:

“Good morning,” you say as you enter the office.

Your workstation screen brightens, a window appears on the screen, an

androgynous face appears, and a very human voice says, “Good morning.

You have six voice mail messages, two facsimile transmissions, and a list

o f daily action items. Five development tasks are listed.”

The face and the voice belong to your “agent,” an interface program that

performs a variety of sophisticated clerical duties. It has been customized

to anticipate your needs, it recognizes your voice, and it can do many

things at once—like answer your phone around the clock, look up

information, communicate directly with you, and perform other data

processing functions. Communication with the agent can be verbal or

written, but most people prefer to speak to their agents.

“Show me the action items and development tasks,” you say.

Immediately the list of action items appears on the display and the agent -

begins to read the list aloud, highlighting each item as it is read.

“Silence please, and hold the list,” you interrupt. “While you're holding,

check any of the voice mail or fax transmissions for key words.”

You have just asked the agent to perform an analysis of each incoming

message to determine whether it contains any of a set of key words (these

could be people's names, places, phone numbers, or topics that you deem

Gregory E. Russell 93 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

as especially important). As you scan the list of action items on the screen,

you see two appointments, a few telephone calls to be made, and an

anniversary present to be purchased.

By the time you have scanned the list of action items the agent's face has

reappeared on the screen.

It's early and you're not tuned into the work day as yet. Embarrassed (but

why should you be, you're communicating with a machine!), you ask,

“What did I ask you to do?”

“You asked me to check any of the voice mail or fax transmissions for key

words. Would you like a list?”

“Yes, but only those with reference to changes.” A list of messages

appears on your screen. You fix on one item from the list and say “Open”.

In less than a second, a video camera built into the workstation has tracked

your eye movement at the time you said “Open” and the system has

calculated which item you were looking at. You begin to read for a few

moments and then stop.

“Please find all modules in the Factory Automation System that have been

changed in the last month. Store the name of the modules, the source of

the change, and the date and generate an action item for me to review

them.”

“What version of the system would you like to use?” asks the agent as a

scrolling window appears.

“All,” you reply.

“OK,” says the agent.

While you're going through your mail the agent will have an “apprentice”

perform the task you requested. That is, the agent “spawns” a task to

perform configuration management functions. Within seconds, the agent

Project Demonstrating Excellence 94 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

returns to do your bidding. Simultaneously, the first apprentice is

searching the CASE repository looking for module names.

“Can I have a word processor?” you ask the agent. A word processing

program, not unlike the best that you see today, appears on the screen. You

begin dictating a letter (the keyboard or a handwriting tablet can also be

used). The text appears on the screen as you speak each word. While you

are dictating, you think of something for the agent to do. Using a pointing

device, you click on the agent's window.

“I need a source listing for module fmd.inventory.item. Insert it at the

marker I'll note in the text of the document I was working on. Also, call

Emily Harrison in system engineering and tell her that I'll be transmitting

the document later today.”

“OK,” responds the agent. Apprentices are spawned to generate the table

and make the call while you return to your dictation.

The environment implied by the above “conversation” will change the

work patterns of a software engineer. Instead of using a workstation as a

tool, hardware and software become an assistant, performing menial tasks,

coordinating human-to-human communication, and, in some cases,

applying domain-specific knowledge to enhance the engineer's ability.

Roger Pressman’s view of the future is not some ten or fifteen years from now.

Most of the technology described by Pressman is in use now. A friend of mine, Rob

Rapp, bought a speech recognition software package that integrates with several

Microsoft Windows software applications including Microsoft Office. After training the

speech recognition application his speech pattern for a week, Rob can now verbally open

and close applications, open and save files, write documents in Microsoft Word, spell and

grammar check and make corrections to his documents. The software and hardware

costed approximately $600.00. Rob said that the time saved in typing and other tasks paid

Gregory E. Russell 95 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

for the software application in less than two months. The future is here and most o f us

don’t even know it.

To create, develop, utilize, and manage the evolving hardware and software

technologies will require a disciplined approach. All o f the current management and

software engineering experts firmly believe this. According to Michael Ray [Ray93]:

We need to be disciplined, to hold scrupulously to higher values, to operate

with creativity, compassion, and community, and to become leaders who see

the greater good for each other as the motivating force for what we do. In the

present world situation we must ask, as Catherine Ingram did in her book In

the Footsteps o f Gandhi, “How should one lead his life in a world of

seemingly intolerable suffering?” Or as Winston Churchill put it, “We make a

living by what we get. We make a life by what we give.” These are the

directions for an individual career and for business in general that are

necessary in this time of change.

Project Demonstrating Excellence 96 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Software Engineering In Academia

This section discusses Software Engineering as an academic discipline. The first

sub-section discusses the Software Engineering academic discipline history. The next

section discusses the importance of Software Engineering academic research and

Software Engineering academic pursuits, and publications. The final section discusses my

computer science and software engineering curriculum analysis for National University.

Evolution of CS/SE Degree Programs

Software engineering is an extension of Computer Science. So it is appropriate to

discuss the growth of the Computer Science degree programs as well as the emergence of

the Software Engineering degree programs.

It all started in the mid-1950s. In the beginning there were mathematics and

mathematicians. These were the first programmers and computer scientists. Why, because

it took a mathematician to understand machine code, all Os and Is. The initial computer

science programs were taught either in the academic department o f mathematics or

engineering.

The first few Computer Science Ph.D. programs appeared about 1961; these were

interdisciplinary programs in existing departments rather than separate degree programs.

By 1964 there were about a dozen computer science bachelor's degree programs in US

universities. Between 1964 and 1968, the number of bachelor's programs grew to nearly

100; master's programs experienced a similar increase. The number of Ph.D. programs

grew from about 10 to about 40

According to Gary Ford [Ford92], the publication of the first computer science

curriculum recommendation from the Association for Computer Machinery (ACM) was

the catalyst for the rapid growth of undergraduate computer science programs between

1964 and 1968.

S. Pollack [Pollack82] also pointed out:

Gregory E. Russell 97 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

[ACM] Curriculum '68's influence also had a dichotomizing aspect: Its

basically mathematical orientation sharpened its contrast with more pragmatic

alternatives. Most computer science educators agreed that the proposed core

courses included issues crucial to computer science. However, the curriculum

brought to the surface a strong division over the way in which these issues

should be viewed. In defining the contents of the courses, Curriculum '68

established clearly its alignment with more traditional mathematical studies,

giving primary emphasis to a search for beauty and elegance. Pedagogically,

this implied a set of academic objectives concerned chiefly with preparation

for graduate study leading to a career in research. Consequently, those

colleges and universities holding with the perception of computer science saw

Curriculum '68 as a reinforcement and endorsement of their orientation and

sought to implement it commensurate with their resources.

On the other hand, many educators felt the curriculum to be at odds with their

perception of reality. They argued that the uses of computer science and the

observed roles of computer scientists militate for an education approach much

closer to that used in professional disciplines. ... In this light, computer

science education should have a strong professional flavor with design

principles, general approaches to problem solving, and experiments with

current methodologies receiving considerable attention. This would be

consistent with the expectation of professional employment starting at the

baccalaureate level.

S. Pollack [Pollack82] continued by describing the movement toward “research”:

The rapid growth of computer science education [in the 1960s] stimulated

increased interest in theoretical areas (such as automata theory and formal

languages) whose pursuit predated computers. Now, these areas were seen

potentially to impinge on questions raised by the design and use o f computer

systems. Consequently, there appeared to be a prospect of concurrent and

mutually nourishing development in computer science theory and practice.

Project Demonstrating Excellence 98 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Curiously, this did not happen. The newly intensified effort generally

maintained its own paths, interacting very little with the application-motivated

problems that were helping to spur headlong advances in hardware and

software technology.

John von Neuman, the father of programming languages, made these prophetic

comments regarding the curriculum trend toward pure theory:

As a mathematical discipline travels far from its empirical source, or still

more, if it is a second- and third-generation only indirectly inspired from ideas

coming from “reality,” it is beset with very grave dangers. It becomes more

and more purely aestheticizing, more and more purely I ’art pour I ’arts. This

need not be bad, if the field is surrounded by correlated subjects, which still

have closer empirical connections, or if the discipline is under the influence of

men with an exceptionally well-developed taste.

But there is a grave danger that the subject will develop along the line of least

resistance, that the stream, so far from its source, will separate into a multitude

of insignificant branches, and that the discipline will become a disorganized

mass of details and complexities.... [WJhenever this stage is reached, the only

remedy seems to me to be the rejuvenating return to the source: the reinjection

of more or less directly empirical ideas. I am convinced that this is a necessary

condition to conserve the freshness and the vitality of the subject, and that this

will remain so in the future.

Unfortunately, von Neumann’s comments are somewhat valid for the typical

computer science curriculum of the past 10 to 20 years. Very few, if any, foundation

courses reached back toward the empirical source of building useful artifacts.

Within the last 10 years the computer science degree programs have specialized

into many sub-fields, including software engineering. Most of the degree programs are

slowly moving away from the research type curriculum toward the practitioner type

curriculum. You might say that the computer science degree programs are starting to

Gregory E. Russell 99 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

produce “software engineering technologist.” These graduates have a basic software

engineering understanding and can provide the technical know how to put a software

design together. This “technologist” has a similar role of the electronic engineering

technologist, in that he works side-by-side with an engineer.

A report on software engineering undergraduate education described 11 colleges

and universities that have significant course sequences in software engineering. As far as

the writers o f the report know, there is not a program in the United States that uses

“software engineering” in its undergraduate degree program name. The current degree

programs are either specialty fields or emphases within another degree program. These

programs are evolving very slowly. Gary Ford [Ford92] commented on the growth of the

software engineering degree field:

Compared to computer science, the growth of separate software engineering

programs has been much slower. Although there have been calls for such

programs as early as 1969, no undergraduate programs actually named

software engineering have been created. We do believe, however, that the

majority of computer science programs now have at least one course in

software engineering.

We [know that] approximately 25 master's or certificate programs in software

engineering have been created between 1978 and 1994— a 16-year span.

[The] growth rate is also much slower than that of computer science.

We do not know of doctoral programs in software engineering that are so-

named and separate from computer science programs. Many universities

report that increasing numbers of students in computer science doctoral

programs are writing dissertations on software engineering topics.

In 1987 a report on software engineering curriculum was published by the

Software Engineering Institute. The growth rate of software graduate programs were not

as great as the computer science growth rate when the ACM published their curriculum

recommendations. Gary Ford [Ford92] observed:

Project Demonstrating Excellence 100 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Although the rate of growth of master’s programs increased, the SE1

curriculum was not the only factor in that growth. The increasing needs of

industry for educational opportunities for software engineers was a major

reason for the development of new programs. On the other hand, the majority

of programs started since 1987 acknowledge having been influenced by the

SEI curriculum. This reinforces our belief that a model curriculum is an

important catalyst for creation of new programs.

Another reason for the slow growth is that most of the “software engineering”

programs are contained within a computer science department or college. Many computer

science educators feel that software engineering is not mature enough to warrant a

separate program, department, or college. Others feel that software engineering is a

specialty field and should not be taught at the undergraduate level. S. Pollack [Pollack82]

commented about similar arguments made by educators in the 1960s about computer

science:

At a more fundamental level, many universities, while convinced of computer

science's separate identity, felt that an independent program was premature.

For them, computer science was a graduate specialty to be preceded by

undergraduate concentration in some established area (not necessarily

mathematics or science).

The driver behind the computer science “view point” change for many

universities was not from within, but from the computer and software industry.

According to Donald Christiansen [Christiansen92c]:

For years now [computer scientists and software engineers] have been

grousing about the courses they are required to take as undergraduates [and

graduates]. And their employers have been complaining that new graduates

are not ready to go to work as bona fide engineers.

Fortunately, colleges and universities are listening to their alumni and the entities

that recruit their engineering students.

Gregory E. Russell 101 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Gary Ford [Ford92j concluded in the Software Engineering Institute’s Software

Engineering Undergraduate Education report with these statements:

1. We do not expect software engineering programs to emerge as rapidly

as computer science programs did. Much of the software industry still

relies on relatively undisciplined development processes and is

satisfied with the level of programming skills in graduates of existing

computer science programs. As the industry matures, there will be a

greater demand for software engineers (rather than programmers), but

that is a slow process.

2. Although separate software engineering programs in U. S. universities

are appearing first at the graduate level, this is not a requirement. It is

possible for a university to develop an undergraduate program without

first creating a graduate program

3. The publication by the professional societies o f a model curriculum for

a bachelor of science in software engineering degree would probably

accelerate the growth of such programs significantly. The effects of

such a model curriculum would include establishing the credibility of

such programs, encouraging authors and publishers to create the

needed new textbooks, and providing a basis for future accreditation

guidelines for such programs.

4. For the immediate future, the most likely evolutionary path will be the

creation of a software engineering track within a computer science

program. We hope that schools following this path will learn from

examples [of other exemplary schools] and develop introductory

courses that serve both software engineering and computer science

tracks equally well.

Project Demonstrating Excellence 102 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Software Engineering Research and Publications

We still don’t know all the complexities involved with software development. The

same is true with software research. According to Maurice Wilkes [Wilkes95]:

As the computer industry has become dominated by software, hardware

research has receded into the background. In consequence, the model of

[traditional] industrial research ... must be applied with caution in the

computer industry. Software research makes no demands for laboratory

facilities of the traditional kind nor for people with qualifications in the

experimental sciences. It is necessary to have people with original minds and

an interest in industrial innovation, but the skills they need are essentially the

same as those needed by software engineers or computer scientists generally.

In the past, most of the ground breaking research in computer technology was

done at university research centers. This is not tme now. In most cases computer science

and software engineering educators do not fully understand the complexities involved

with software engineering research (there are a few exceptions). Capers Jones [Jones91],

a well know software researcher, had this observation about measurement

implementation and research:

Management consulting companies such as Software Productivity Research;

DMR Group; Peat, Marwick & Mitchell; Nolan, Norton & Company; and

Ernst & Young have often been more effective than universities both in using

metrics and in transferring the technologies of measurement throughout their

client base.

According to Daniel Berry [Berry92]:

Software engineering research is necessary because software production is

hard, much harder than many people seem to appreciate. Some generalize

from the kinds of programs developed for completely specified classroom

assignments, which cannot take more than a semester to complete and which

are never run after they are handed in, to the belief that all software is

Gregory E. Russell 103 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

straightforward, is only few dozen pages long, and is just a matter of

implementing the obvious, complete requirements of a single-person

customer. Some generalize from the kinds of programs that are formally

specifiable and whose compliance to these specifications is formally verifiable

to the belief that all software systems are formally specifiable and verifiable.

However, the fact is that real software developed to solve real problems is

several orders of magnitude more difficult than the above toy problems.

Most research deals with simple problems, that is, the “real” problem’s

complexities are reduced to perform “valid” experiments on the problem area. In software

engineering, we cannot reduce the complexities for two reasons. First, they are

interrelated, and second, the purpose of the research is to develop methods to manage the

complexities. Another reason we cannot reduce the complexities involved with software

research is the inherent complexities within the problem area itself. The complexity of

software research is the most complex research field known to man. According to Meir

Lehman [Lehman91], there are three classifications of programs, which he calls the SPE

scheme:

An S-type program is one required to satisfy some pre-stated specification.

This specification is the sole, complete and definitive determinant o f program

properties.... In their context correctness has an absolute meaning. It is a

specific relationship between specification and program.

A P-type program is one required to produce an acceptable solution o f some ...

problem. If a complete and unambiguous statement of that problem has been

provided it may serve as the basis for a formal specification.... Nevertheless,

program correctness relative to that specification is, at best, a means to the

real end, achievement of a satisfactory solution.... In any event, when

acceptability of the solution rather than a relationship of correctness relative to

a specification is of concern the program is classed as o f type P....

An E-type program is one required to solve a problem or implement an

application in some real world domain. All consequences of execution, as, for

Project Demonstrating Excellence 104 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

example, the information conveyed to human observers and the behavior

induced in attached or controlled artifacts, together determine the acceptability

o f the program, the value and level of satisfaction it yields. Note that

correctness cannot be included amongst the criteria.... Moreover, once

installed, the system and its software become part o f the application domain.

Together, they comprise a feedback system that cannot, in general, be

precisely or completely known or represented. It is the detailed behavior

under operational conditions that is o f concern.

The E-type programs are the software engineering researcher’s problem area. This

problem area is similar to forecasting weather. The only time weather forecasters are

correct is when they look out the door. Accurate short and long range weather forecasting

is impossible. There are two many unknown and known variables to deal with. Super

computers have choked on the data while running forecasting routines. Software

engineering research and forecasting has the same problem. Daniel Berry [Berry92]

commented on the Lehman’s SPE system and how it relates to software engineering

research:

Software engineering research, when it develops tools and environments, is

developing mainly E-type software. Initially, the software engineers, doing

their own software development, perceive a need for a tool or an environment

to do some of the more clerical parts of their task, to manage the software

through its entire life cycle. From this perceived need comes a vague idea of

the functionality of the tool or environment. However, this idea cannot be

made less vague until the tool or environment is actually used. Thus, the

software engineer builds a near-production quality prototype and tries it out,

perhaps in the construction o f the next version. Thus, the tool or environment

has become an inextricable part of its own and other software life cycles.

It is these impossible-to-specify and thus impossible-to-verify programs that

are the subject of software artifact engineering research, and it is the

Gregory E. Russell 105 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

regularization of the process of producing these artifacts that is the subject of

software engineering methodology research.

Perhaps, here we see the basis for the theoretician's condemnation of software

engineering research. The kinds of programs they work with are S type.

Perhaps they are not even aware o f the existence of P-type and E-type

programs, and they believe that all programs are S type or are easily made S

type. If all one knows about are S-type programs, then it is quite reasonable to

doubt the necessity o f methodological research; it suffices to formalize the

problem and the program rolls right out of the formalization. Certainly, S-type

programs can be implemented quite systematically every time, and there is no

need for software project management, for example, to build them. It is for E-

type programs that the most help is needed; and if a technology, method, or

technique is judged as useful, it is because it makes the production of E-type

programs more systematic and repeatable.

Another problem the software engineering researcher faces is the appropriate

number o f subjects (population) to select for the research project. Capers Jones did not

discuss why universities are falling behind the research power curve. The primary reason

is that university students do not represent the software development environment.

Stephen Schach [Schach93], a software engineering educator and researcher made this

comment:

When performing experimentation-in-the-many, students cannot be used as

subjects.The difference of scale between classroom projects and real-life

projects precludes the use of students in experimentation-in-the-small. The

situation is considerably worse with regard to experimentation-in-the-many.

The largest practical classroom group project is generally a team of three

students working together for 10 weeks; when teams are larger, the actual

work is usually done by only two or three members o f the team. Bearing in

mind that an undergraduate can probably devote at most 10 hours a week to a

single course, this means that a team of three students can put in at most 2

Project Demonstrating Excellence 106 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

person-months of effort. However, a project that can be completed in 2

person-months can hardly be considered to be programming-in-the-many. A

larger effort is likely to be possible only from a graduate class, and even then

3 person-months is probably the upper limit. Furthermore, in order to be able

to make valid statistical inferences, a minimum of 20 teams is needed. This

means that the class size must be at least 60, which is not common at the

graduate level in computer science. The experiment o f Boehm, Gray, and

Seewaldt to compare rapid prototyping with specifying was run with only

seven teams, four of size 3 and three of size 2, a total o f 18 graduate students.

The average team effort was 2.7 person-months. There are a number of

reasons why this experiment has been attacked, including the argument that

the product was hardly large enough to constitute programming-in-the-many

and that the subjects were computer science graduate students and not

computer professionals. In addition, the experiment has not been repeated by

an independent group.

Another problem with Software Engineering research is validating the results

using statistical analysis. The problem is that the sampling population is not large enough

to effectively validate the results. Stephen Schach discussed an experiment-in-the-small

using about 50 students. A software engineer researcher wanted to validate a new

technique for coding products that could result in fewer faults. The half of the 50 students

are chosen at random to use the new technique, the other 25 are to use the techniques

taught in class. These two groups were called Team A and B. Team A used the

researcher’s method and Team B used the traditional development methods. Stephen

Schach [Schach93] expands upon this problem by taking the previously described

experiment and creates an experiment-in-the-many by using software practitioners in the

field . He also discusses Sackman’s research on software practitioner performance:

Suppose that team A completes the product in only 20 person-months, while

team B takes 29 person-months. At first sight this seems to mean that the new

design method used by team A promotes faster product development than the

Gregory E. Russell 107 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

existing design method used by team B. But that is not necessarily the case. It

is quite conceivable that the members of team A are simply better software

engineers than those of team B and that the observed differences are due

solely to differences between individuals in the two teams.

Is it conceivable that such large differences can exist between individual

software engineers? Sackman performed a series of experiments comparing

the abilities o f computer professionals. He observed differences o f up to 28 to

1 between pairs of programmers with respect to items such as coding and

debugging time, and product size. Superficially, this is easy to explain: An

experienced programmer will almost always outperform an entry-level

programmer. But that is not what Sackman measured. He worked with

matched pairs of computer professionals, comparing, say, two individuals

with 12 years of experience implementing operating systems in assembler.

Another pair of his subjects might be two entry-level programmers, both

trained at the same institute and both with only 2 months of programming

experience in implementing data capture products. What is most alarming

about Sackman's results is that his biggest observed differences, such as the

figure of 28 to 1 quoted previously were between pairs o f experienced

programmers. Thus the difference between the times needed for the two teams

[A and B], namely 20 person-months for team A and 29 person-months for

team B could easily be explained by differences in the abilities o f individual

team members.

This is another reason why software engineering research is so difficult and so

exciting.

In academia, publications are critical to the peer evaluation and academic

promotion process. I have found that it is almost impossible to publish validated software

engineering research because by the time you have validated what you have done, the

technology is no longer current. I can write about what I do in the classroom, but to really

get into the real research is more difficult. It requires a lot of time, money, and faith by

Project Demonstrating Excellence 108 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

the institution providing the funds and the institution acting as the research subject.

Daniel Berry [Berry92] also commented about this subject:

I have heard comparisons of published papers in conferences and journals of

theoretical computer science and published papers in conferences and journals

of software engineering. The claim is made that the theoretical papers involve

much more work to bring to final published form than do the software

engineering papers. This can be substantiated partially by the longer delays

between submission and appearance for the theoretical papers. In addition, it

takes much more work to get the first submitted version written. This

observation may be true, but it misses part of the point. The way theoreticians

work, the paper is the whole work. When an idea comes to the theoretician, he

or she begins writing a paper. The development of the theory is the writing of

the paper. On the other hand, even before a paper in software engineering can

be written about a particular tool, environment, or software artifact, the tool,

environment, artifact must be implemented, installed, tested, and used. Even

before a paper can be written about experiences using a software method,

management technique, tool, environment, or program, the tool, environment,

or program must be implemented, installed, and tested; the users must be

trained in the method, technique, tool, environment, or program; they must be

left to apply the method, tool, environment, or program; and finally the

authors must decide what has been learned. If one counts the work that must

be completed before writing can be started, it is doubtful that the theoretician

is spending more time to produce a paper than is the software engineer.

Indeed, the labor intensiveness of software engineering research is the reason

that the publication list of a good software engineering academic will not be

anywhere near as long as that of a good theoretician.

Gregory E. Russell 109 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Nature of Software Engineering Courses

What is the nature of our software engineering programs? In a word, dismall.

Software engineering measurement undergraduate and graduate courses do not exist.

Remember, this is the most important topic of software engineering, processes

management, and research. According to Caper Jones [Jones91]:

Academic institutions and universities are distressingly far behind the state of

the art in both intellectual understanding of modem software measurements

and the actual usage of such measurements in building their own software.

The first college textbook on function points, Dreger's text on Function Point

Analysis, was not published until 1989, a full 10 years after the metric was

placed in the public domain by IBM. Even so, the author is employed by

Boeing and is only a part-time faculty member. The number of major U.S.

universities and business schools that teach software measurement and

estimation concepts appears to be minuscule, and for the few that do the

course materials appear to be many years out of date. The same lag can be

observed in England and Europe. Interestingly, both New Zealand and

Australia may be ahead of the United States in teaching software measurement

concepts at the university level.

In addition to the lack of measurement courses, the computer programming

assignments do not come close to replicating the realities of software development. This

is affirmed by Daniel Berry [Berry92]:

In addition, classroom exercises are woefully unrealistic in terms of the

quality assurance and maintenance activities they require. Class programs are

tested only enough to make sure that they will pass the grading test. They are

forgotten once they are handed in, never to be maintained. It is well known

that testing and maintenance account for about 60% of the cost of program

production [Boehm81]. These two activities are difficult precisely because

they involve the paths of interaction between parts. When tracking down the

source of a bug, which usually shows up nowhere near the source, all possible

Project Demonstrating Excellence 110 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

paths of interaction must be followed backward from where the bug is

observed. Moreover, each time a change is made, all possible impacts of that

change must be explored. Because these interactions grow on an exponential

scale, human creativity becomes an absolute necessity to cut through the

combinatorial explosion to focus on the most likely places of interaction.

Thus, the classroom programming exercises simply do not show the full scale

of intellectual difficulty involved in software production. Those who

generalize from software developed in the classroom come to unrealistic

conclusions.

The funny thing is that even these classroom-style exercises are harder than

people think. There are several cases of authors promoting a certain systematic

or formal way of working in a published paper containing a smallish,

classroom-style toy example, only to end up red-faced as readers found and

published corrections to their supposedly correct example.

If classroom-style, relatively trivial exercises are so difficult to do right, what

hope is there for any real-life, industrial strength or at-the-frontier program to

be done right? Programs are complex animals, and the study of methods to

manage that complexity is an intellectual challenge even greater than that of

programming and mathematics, which are only tools o f the process.

After our students receive their degrees, we hire them without seeing their work.

Since 1988,1 have encouraged my students to create a computer science or software

engineering project portfolio. This portfolio could be a simple notebook binder or disk

storage. The portfolio contains all their written work plus their best project work. Since

National University was not well-known, I felt that the portfolio would give them an

advantage when competing with Stanford, the University of California, and other

prestigious computer science schools.

While researching material on quality management and productivity I discovered

that Tom DeMarco met a computer science educator in western Canada that felt the same

as I did. This is Tom DeMarco’s [DeMarco87] story:

Gregory E. Russell 111 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

In the spring of 1979, while teaching together in western Canada, we got a call

from a computer science professor at the local technical college. He proposed

to stop by our hotel after class one evening and buy us beers in exchange for

ideas. That's the kind of offer we seldom turn down. What we learned from

him that evening was almost certainly worth more than whatever he learned

from us.

The teacher was candid about what he needed to be judged a success in his

work: He needed his students to get good job offers and lots of them. “A

Harvard diploma is worth something in and of itself, but our diploma isn't

worth squat. If this year’s graduates don't get hired fast, there are no students

next year and I'm out of a job.” So he had developed a formula to make his

graduates optimally attractive to the job market. Of course he taught them

modem techniques for system construction, including structured analysis and

design, data-driven design, information hiding, structured coding,

walkthroughs, and metrics. He also had them work on real applications for

nearby companies and agencies. But the centerpiece of his formula was the

portfolio that all students put together to show samples of their work.

He described how his students had been coached to show off their portfolios

as part of each interview:

“I’ve brought along some samples of the kind of work I do. Here, for

instance, is a subroutine in Pascal from one project and a set of COBOL

paragraphs from another. As you can see in this portion, we use the loop-

with-exit extension advocated by Knuth, but aside from that, it's pure

structured code, pretty much the sort of thing that your company standard

calls for. And here is the design that this code was written from The

hierarchies and coupling analysis use Myers' notation. I designed all of

this particular subsystem, and this one little section where we used some

Orr methods because the data structure really imposed itself on the process

Project Demonstrating Excellence 112 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

structure. And these are the leveled data flow diagrams that make up the

guts o f our specification, and the associated data dictionary ...”

In the years since, we've often heard more about that obscure technical college

and those portfolios. We've met recruiters from as far away as Triangle Park,

North Carolina, and Tampa, Florida, who regularly converge upon that distant

Canadian campus for a shot at its graduates.

Of course, this was a clever scheme of the professor's to give added allure to

his graduates, but what struck us most that evening was the report that

interviewers were always surprised by the portfolios. That meant they weren't

regularly requiring all candidates to arrive with portfolios. Yet why not? What

could be more sensible than asking each candidate to bring along some

samples of work to the interview?

The portfolio is another measurement process. It provides an historical reference

for the students. The portfolio also helps them to see their improvement, recognize their

capability, and, in most cases, know their potential. The portfolio is one of the most

important instructional tools available to the instructor.

Curriculum Analysis

I designed several computer science and software engineering courses as part of

my Ph.D. internship. These courses vastly improved National University’s Computer

Science and Software Engineering degree programs.

I also performed an extensive analysis of National University’s computer science

and software engineering program in 1993.1 have included my findings as an example of

the problems the computer science and software engineering programs are facing today.

Over the past year most of us have been extremely interested in modifying the

B.S. Computer Science (BSCS) program. I think that we have done a fairly

good job in defining new needs and justifying those needs with new and

modified courses in this program. Most of the changes are productive and will

Gregory E. Russell 113 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

provide the student with an excellent foundation of theory and programming

skills. Our graduates will serve the local software industry well, with some

degree o f additional education and training

Several questions that I cannot seem to answer are

• Is this a traditional science based computer science degree?

• Does this degree contain the necessary courses for a computer

scientist?

• Are we providing the courses that are “really” required by our

students?

• Are we providing the local and regional software industry with bona

fide computer scientists or some hybrid that is not really a computer

scientist but not really an information scientist either.

BSCS Problems

Over the past four years the [Computer Science project] instructors

encouraged the students to develop their own ideas for a project. The

instructors either accepted the project ideas or gave them another chance to

come up with another idea. In most cases the first idea was accepted.

I have seen several problems with this approach.

1. The students become both the users and designers. A situation that is not

normally seen in the real-world.

2. The students do not have the academic training in software engineering

concepts, including project management. Therefore, their software

engineering skills are lacking for a software engineering based project.

3. The instructors usually do not have a full grasp of the complexities o f the

project. Risk management is not part of the engineering process. Problems

that should have been recognized in the first stages are not even noticed

Project Demonstrating Excellence 114 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

until the last stages of development. The instructor has to compromise the

student derived requirements so that they can finish the project.

4. The students drive the development process rather than the instructor. This

is due in part to the students deciding on the project, the goals o f the

project, and finally the software requirements o f the project. The instructor

plays a minor role in this decision process.

5. The software engineering concepts o f analysis, design, testing, and

implementation are not fully followed in the project. The students start

coding before they actually look at the project’s software requirements.

They do the documentation to satisfy the requirements of the course work,

not to satisfy the software engineering requirements. In other words, they

do not gain the benefits of actual software engineering due to their

inexperience with the process. Their primary objective is to complete the

course requirements in any way possible, not the software engineering

process.

6. The students expect a high grade due to the number of hours spent on the

project development. The quality of the work doesn't matter. The

mechanisms to track each student's part in the software development is

either partially recognized or missing entirely. The student's grade is based

almost entirely on the teams efforts not their efforts. This provides an

environment for hard working students to carry the team well beyond the

team’s capability or for the team to carry a weak student thus allowing a

few team members to do most of the work.

7. The instructors are placed into a role of project manager or division

manager. They know what the project is suppose to do but not know how

to construct the project. Again, the project complexity comes into play,

whereby the instructor is caught off guard if some unforeseen problem

arises.

Gregory E. Russell 115 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

8. The students are encouraged to use software development tools during the

project. However, as a whole the students are not trained on specific tools,

such as code generators (which should not be used during the project

courses), screen generators, graphic user interface development

environments, etc. Generally, only one team member is experienced with a

specific tool and tries to train the other team members to use this tool. This

creates several additional problems. During the first two months the

students are learning the software engineering concepts (which encourages

the use of tools) and the various development tools available for rapid

prototyping and development. There is very limited time for the students

to learn the software engineering concepts and internalize them and at the

same time learn new software development tools and become proficient

with them within four or five weeks. This creates a very stressful situation

for the students and the project instructors.

Solutions

How can we eliminate most of the [Computer Science project] problems and

yet at the same time provide a creative environment for the CS project

students? First we need to get out of the mind set that we must provide a open

ended development environment for our BSCS students. If we are going to

create a software development environment similar to the real-world, we must

comply with the constraints of the real-world. As such we must provide the

following constraints:

1. Provide coding standards that are consistent to the recommended industry

standards. These standards must provide the foundation for structured

programming concepts. The standards should be general for the

programming languages used at National University (Pascal, C, C++, and

Ada) and at the same time provide standards for specific language

characteristics.

Project Demonstrating Excellence 116 Gregory E. Russell

i with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

2. Provide document standards that are consistent, in some degree, with the

recommended industry standards (IEEE and DOD).

3. Limit the software development tools used by the students to those

provided by the National University. We must actively promote the use of

these tools of the students by the faculty. I believe that we have a very

good software development environment that fits into the scope of what

we are trying to teach in our academic environment. Let’s not forget that

our goal is to provide industry with students who know how best to use the

resources provided, not students who will be at a loss if they do not have

specialized software development tools to create their source code or menu

system.

4. Provide a tool that will encourage the same level of work from all the

students in the course. This tool is the Weekly Team Status Summary

Report.

5. Grading criteria must be set up to allow for individual work as well as

team interaction.

6. Provide a CS project information and policy form for each student that

will define the following:

• Project agreement description

Project proposal

Project criteria

Student, Team, and Instructor responsibilities

Ownership of project copyright

Project deliverables

Suggested projects

• Description of the first assignment

Gregory E. Russell 117 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

• Description of the weekly team status reports

7. A Computer Science / Software Engineering (CS/SE) Quality

Management Team should be formed that will provide both assistance and

quality control of the project classes. The responsibilities of the CS/SE

Quality Management Team are as follows:

• Review the CS/SE curricula annually and make recommendations to

San Diego for review.

• Modify the CS/SE curricula to meet the needs o f the local community.

The curriculum foundation as required by the National University

CS/SE department will not be changed.

• Determine problem areas in curriculum continuity between courses

and make recommendations for improvement.

• Review textbooks that may fit the local industry needs and make

recommendations to San Diego for acceptance.

• Review the Student Work Experience database and make

recommendations to the CS/SE project faculty for project team

structure.

• Work with the local industry to determine specific areas of instruction

that the industry would like National University to offer to their

students, especially if they are paying the tuition.

• Seek out software projects from the local industry for both the BSCS

and M.S. Software Engineering (MSSE) project courses.

• Write system requirements and software requirements for the BSCS

project courses based on the needs of the local industry software

projects. The BSCS project courses are limited to design and

implementation only.

Project Demonstrating Excellence 118 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

• Write statement of work for the MSSE project courses based on the

needs of the local industry software projects.

• Help the BSCS and MSSE project faculty with research when the

project teams are doing research out o f the project faculty member's

expertise.

• Review all the material created by the project course students and

make student grading recommendations to the project faculty.

• Review all CS/SE course outlines to determine if the proposed course

material contains the basic requirements o f the National University

CS/SE department and the recommended material of the Sacramento

Regional Academic Center Department of Computer and Information

Science Quality Management team. If needed, make changes in the

course outlines and notify the appropriated instructor of the changes

and the reasons they were made.

• Perform quarterly reviews of the CS/SE students' performances to

determine if any student is at risk and may need remedial training or is

a possible candidate as a tutor.

• Semi-annually perform a self assessment to determine areas of

improvement in management, interaction with the CS/SE faculty, and

how to improve student performance.

• The CS/SE Quality Management team members will perform the

above tasks continually and meet once a quarter to discuss their

findings and assessments.

8. A work experience evaluation form should be given to the students at

different points in their program. These points occur when they start their

first programming language course, the first systems course, and when the

Project Agreement and Policies document is given to the students. The

evaluation form will help the instructors by providing

Gregory E. Russell 119 Project Demonstrating Excellence

i with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

• student team leaders, those student with excessive work experience,

and

• information to assign students equitably to a project team.

9. The CS project instructor, along with the CS/SE Quality Management

Team, should decide which students will be assigned to a specific project.

This will eliminate the problem of having all strong students on one team

and all weak students on another team. It will also provide a real-world

environment, such as, that a company project manager decides which

employee will work on a specific company project.

10. The instructor or a member of the CS/SE Quality Management Team will

become a user for the project teams. The project selection committee will

assign specific projects to the CS project course. These projects may be

academic in nature or projects required by the local business community.

The students are not allowed to select their own projects unless it is for

their company and their company is willing to become actively involved

with the project.

11. Provide a small seminar on how to deal with personal conflict problems.

This seminar should help eliminate the dominate team member's influence

in driving the team direction as well as the timid team member, who may

have great ideas, but is intimated by the dominate team member.

M.S. Software Engineering

National University's M.S. Software Engineer program is one of the best in

the United States, if not the world. We have looked at the industry needs and

other academic programs back in 1988 and modified the MSSE program at

that time to meet the needs of the software industry. We all felt that we really

did a superb job defining a curricula that met the needs o f the local and

regional industry.

Project Demonstrating Excellence 120 Gregory E. Russell

with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Five years have passed, and we have not kept abreast with the rapid advances

in software development tools, software project management systems and

methods, software quality management systems and methods, risk

management issues, and the software industry needs. To bring the scope of the

MSSE program back into an actual software engineering program we must

modify and add several MSSE courses. This will prevent the MSSE program

from becoming a graduate computer science program with a software

engineering emphasis.

We do not have any undergraduate foundation courses for the software

engineering module courses. We do not have an “expert system” or AI

undergraduate foundation course for CS 625. These course are introduction

courses because the graduate students do not have the background or training

necessary to take the appropriate advance subject material. We must have

undergraduate courses to support the graduate courses; otherwise all we are

doing is teaching advance undergraduate courses and giving credit for

graduate work.

I intend to pose some serious questions about our MSSE curricula and intend

to provide answers that are supported by the software industry and

professional societies.

Problems

Since 1988, the MSSE program has been divided into 4 modules with each

module independent of the other modules, except for the project module. The

problem with this concept is that the modules do not reinforce the material

covered in the other modules. This is especially true o f the current design of

the database course, which expects the students to design a database SQL

front-end and database engine. How can we expect these students to come up

to software engineering graduate level standards when they do not know the

methodologies or techniques to analyze and design this project.

Gregory E. Russell 121 Project Demonstrating Excellence

i with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

We have a problem with the system courses. These courses are designed as

traditional “graduate” computer science courses. I have reviewed six

California and one out-of-state undergraduate and graduate computer science

programs. The syllabus description of our system courses falls directly in line

with all seven of the upper division computer science course descriptions for

essentially the same courses. We need to review these courses and bring them

into line with software engineering concepts for hardware/software systems

and transportability issues, advance operating systems and portability issues,

advance networks and the use of them in software development.

We have a problem with the “traditional” software engineering courses,

CS 620, CS 622, and CS 626. There are faculty who expound the benefits of

object-oriented design while at the same time glossing over the benefits of

structured analysis and design.

Six very complex concepts are delegated to CS 620, while only one complex

subject is delegated to CS 622. The students have to learn (and if given

enough time, practice) the following software engineering concepts in CS 620:

• Software project planning

• Feasibility studies

• Software requirements analysis

• Structured analysis

• Structured design

• Project plan document

• System requirements definition document

• Software requirements specification document

• Software detailed design document.

Project Demonstrating Excellence 122 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

This course is taught as a traditional undergraduate “Introduction to Software

Engineering” course without the verification and validation material. The

students are not given enough time to digest the material and to internalize it.

The second software engineering course, CS 622, dedicates four weeks to

software object-oriented design concepts and techniques. Again the students

have to go through a review of object-oriented programming concepts. In most

cases the students are not familiar with either object-oriented design or

programming concepts. This is the main reason for the course being dedicated

to this subject is because the students usually do not have the proper

foundation to take this course and National University does not provide the

proper undergraduate foundation courses for the MSSE graduate students.

The third software engineering course, CS 626, only covers a very small

portion of the material that a software engineering professional must have,

software quality management. CS 626 teaches the students verification and

validation concepts and techniques, otherwise known as unit, integration, and

system testing. It does not properly cover configuration management, software

quality risk analysis, software quality factors, software complexity factors, and

a host of other quality issues that must be covered in this course.

CS 623A-B is now taught as a database management system design course,

requiring the students to build a structured query language (SQL) front-end

and a database engine. In other words, this course is designed as a computer

science graduate course. This course should be designed as an advance

database design course.

Finally, the last course, CS 625, Expert Systems, should be removed from the

program entirely. This course is a specialized computer science course and

taught as a introduction undergraduate course since we do not have a

undergraduate foundation course.

Gregory E. Russell 1 2 3 Project Demonstrating Excellence

with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Over the next few pages I am going to attempt to discuss the above problems

and give some viable solutions to them.

Solutions

CS 620 — This course should be taught as a “Software Requirements and

Analysis” course. This course will use two small projects to help the students

be able to understand

• the process model for requirements analysis

• the software life cycle requirements and analysis phase models

• software structured, real-time, and object-oriented analysis

• how to eliminate ambiguity in user-developer communication

• the purpose of the software requirements specification

• the difference between the different analysis methods (structured, real

time, and object-oriented)

• elimination of requirements based risk

• how and when they should use a particular method for their software

product

• the Software Engineering Institute maturity model.

The will also learn how to develop detailed system specifications and software

requirements specification documents.

The small projects developed in this course will be further developed in CS

622, the Software Quality Management course, and the Software Project

Management course.

CS 622 — This course should be taught as a “Software Design Methods”

course. The students will continue using the small projects in this course to

translate the analysis and requirements into a software design. The students

will learn

Project Demonstrating Excellence 124 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

• the process models for software design

• software structured, real-time, and object-oriented design methods

• how to create and evaluate the software detailed design document

• how to transform and translate the structured analysis into a software

structured design

• advance technical writing skills

They will see the difference between the different design methods (structured,

real-time, and object-oriented) and learn how and when they should use a

particular method for their software product.

CS 626 — This course should be changed to a "Software Quality

Management: course. See CS 621 A.

CS 624A — This course should teach the MSSE students on the problems,

solutions, and methods, techniques required to integrate software and

hardware together.

CS 624B — This course should teach the MSSE students on the different

operating systems and how each can enhance or hamper software

development. It should also teach

• the problems and solutions to port software from one operating system

to another, and

• address the issues and problems in developing special purpose

operating systems (for example, embedded real-time systems, object-

oriented systems).

The students should do a research project on how an application written for

one operating system can be ported to another operating system. The students

should look at the application's use o f operating system dependent code and

how much effort would be required to modify this code, the user interface,

operating system efficiency, etc.

Gregory E. Russell 125 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

CS 624C — This course should be an advanced networks course dealing

with software development using network technology.

CS 623A-B — This course should provide a through understanding of

database design. The students should learn how to design, develop,

implement, and evaluate advance database systems for micros, minis, and

mainframes. The course should focus on exploring the architecture and

functionality of operational object-oriented databases, understanding object-

oriented data models, designing a distributed database architecture, and

understanding client/server technology. This course should use a small project

to help the students be able to understand

• the object-oriented paradigm

• client/server and distributed technology

• the relational model and its DBMS implementation

• entity-relationship and object-oriented data modeling

• advance normalization

• the different hardware and software implementations

• Structured Query Language

• embedded SQL in high level languages

• DBMS security concepts

• DBMS integrity concepts

• relational database data definition concepts

• relational database data manipulation concepts

• data distribution methods

• distributed transactions

Project Demonstrating Excellence 1 2 6 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

CS 625A — This course should be eliminated. It is an introduction course to

expert systems.

CS 627A-C (MSSE Project) — The basic definition o f these courses should

not be changed. The students in this course should developed a project for the

local community or an instructor directed project. This will prevent them from

becoming the user/developer. The students need to develop user-developer

communication, and they cannot do this if they are the user. Also the MSSE

students should work with the Management/Business students as they work

with the local community businesses. This would give the MSSE and

Management/Business students experience with technical and non-technical

communications.

As for the proposed research project, the recommended CS/SE Quality

Management Team will provide the academic support for the students as well

as the CS 627 instructor. If the CS 627 instructor does not have the expertise

to work with the student's research project, then the CS/SE Quality

Management Team acts as the user.

If we are going to create a software development similar to the real-world we

must comply with the constraints of the real-world. As such we must provide

the following constraints as described for the BSCS program with the

following addition:

1. Provide extended time during the CS 627A course to develop the expertise

necessary for specialized software development tools. We must actively

promote the use of these tools of the students by the faculty. I believe that

we have a very good software development environment that fits into the

scope of what we are trying to teach in our academic environment. We can

extend CS 627A by expanding the course to a two month format.

Recommended MSSE Module Sequence

Gregory E. Russell 1 2 7 Project Demonstrating Excellence

i with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Right now the MSSE program is made up of four three-course modules. Each

module is independent o f the other, except for the three course project module.

If we add the Software Quality Management and Software Project

Management courses and drop the Expert System and Verification and

Validation courses, the MSSE module makeup would be as follows:

Advance Software Engineering Module (Module 1)

CS 620 - Principles of Software Engineering (Software Requirements and

Analysis)

CS 622 - Advanced Software Engineering (Software Design Methods)

CS 621A - Software Quality Management

CS 62IB - Software Project Management

Advance Database/Client/Server Module (Module 2)

CS 623A - Database Management I (relational systems)

CS 623B - Database Management II (object-oriented systems)

Software/Hardware Systems Module (Module 3)

CS 624A - Principles of Hardware and Software Integration

CS 624B - System Software

CS 624C - Networked Computing Systems

Advance Software Project Module (Module 4)

CS 627Aj - Software Engineering Project la

CS 627A2 - Software Engineering Project lb

CS 627B - Software Engineering Project II

CS 627C - Software Engineering Project III

Conclusion

Project Demonstrating Excellence 128 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

Overall, I think that we have done an extremely good job designing courses

for the B.S. Computer Science and M.S. Software Engineering programs. We

need to keep up with the rapid advances of hardware and software and

incorporate these advances into our course material and labs as much as

possible. This will require a commitment from both the faculty and

administration.

We must redefine the goals of our B.S. Computer Science program. We must

ask ourselves:

• Are we providing the courses required by the students and their

employers or potential employers?

• Is this a true computer science program, or is it a computer science

program with a built in software engineering emphasis?

• If it is a software engineering emphasis, are we providing those

courses necessary to develop junior software engineers?

• Are we providing the proper foundation courses for the M.S. Software

Engineering program? If not, are we sure that the graduate courses,

that require a foundation course, are actually providing advance topics

to the students. I have talked with many of the MSSE instructors, and

all of them tell me that they spend from 25% to 50% of the course

reviewing introduction course material.

As for the M.S. Software Engineering courses, most of these courses are

taught as post-graduate computer science courses. The primary reason stated

for this, is that we must ensure that the MSSE students understand the

implementation issues involved with the applications. First o f all, why are we

“ensuring” that the MSSE students understand the implementation issues by

having them actually implement design?

If I am hired as a software engineer, my employer expects me to know how to

design, determine the risks, guarantee the software quality, and get the project

Gregory E. Russell 129 Project Demonstrating Excellence

i with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

complete within time and under budget. As a software engineer I would hire a

senior programmer to deal with the implementation issues. The senior

programmer is not expected to have the expertise of the software engineer.

If some of the MSSE faculty are concerned that we must ensure that our

MSSE students know how to implement computer science concepts, then we

must provide this education within the B.S. Computer Science program, not

the MSSE program.

Our primary goal for the MSSE program is to produce software engineering

students that fully understand the entire software development process which

includes how to bring a Software Engineering Institute Capability Maturity

Model Level 1 company to a Level 4. If we can meet this goal, we will be the

only university in the United States, possibly the world, to produce world

class software engineers.

Conclusion

As a conclusion to this and the previous academic sections I offer a statement by

Daniel Berry [Berry92]:

It has been observed that computer science is the science of complexity.

Nearly everything computer scientists work on is geared more or less to

reducing or managing the complexity of some system, be it hardware,

software, firmware, or people. Software is the most malleable of the wares

that are the subject of computer science; its very malleability is a continual

enticement to attempt more and more ambitious projects that are beyond what

can be done by special-purpose hardware and firmware and what can be done

by people. The ambition leads to attempting more and more complex tasks for

which the only hoped for solution lies in reducing and managing that

complexity.

Managing software complexity demands a deep understanding of software. It

Project Demonstrating Excellence 130 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

also demands a good understanding of hardware and firmware. Because

software is created by people and groups of people, managing software

complexity demands also a good understanding of people and groups, and that

understanding pulls in elements o f psychology, sociology, and management.

Moreover, if someone claims that software engineering is no more than

psychology, sociology, and management, simply ask this person if he or she

would want the air traffic controller software that lands his or her next flight to

have been written by a psychologist, sociologist, or manager who does not

also have a deep understanding of software in particular and computer systems

in general. Can you, the reader, imagine how someone without an

understanding of how a tiny change to a program can cascade into dozens of

seemingly unrelated bugs, of how algorithms can have different orders of

complexity, and of what abstraction tools and concepts have been developed

to contain complexity can possibly be relied upon to produce quality software

for critical applications on which all of our lives depend?

Software engineering is intellectually deep and is a vital area of academic

study. People who engage in this study should be afforded the same academic

respect that is given to other, more established disciplines.

Sample Academic Software Engineering Products

I have included several software engineering document products that illustrate the

complexity of software planning, analysis (requirements), design, and testing within the

Software Engineering Academic Project Management Production Tools software

application. You can access these samples by selecting an “example document” located in

the Documents tab section. The following document examples can be either viewed

and/or printed using Microsoft Word for Windows, version 6.0:

1. Software Project Plan without Gantt charts (B.S. Computer Science project)

2. Software Requirements Specification (B.S. Computer Science project)

Gregory E. Russell 131 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Review of the Current Literature

3. Software Detailed Design (B.S. Computer Science student project example)

4. Software Users’ Manual (B.S. Computer Science student project example)

5. Software Test Plan and Procedures (Software industry project)

Project Demonstrating Excellence 132 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Software Development Process

« ---------- "Am W >'>' '»> »»»» 'ym m y n v m tmmmMmWaaSmmmM
M W -V S " , * * -- ̂ ;

This section discusses the software engineering methodologies used to develop

the Software Engineering Academic Project Management Production Tools (C-ProMPT)

software application. The first section discusses why I designed and built the application,

and the remaining sections discuss the methods used to analyze, design, construct, and

test the application.

Why C-ProMPT?

Academia needs an inexpensive instruction and tool set software application that

provided consistent software development information, standards, and guidelines for

Computer Science and Software Engineering students throughout their academic

program. According to Watts Humphrey [Humphry95]:

Software is now a critical element in many businesses, but all too often the

work is late, over budget, or o f poor quality. Society is now far too dependent

on software products for us to continue with the craft-like practices of the past.

It needs engineers who consistently use effective disciplines. For this to

happen, they must be taught these disciplines and have an opportunity to

practice and perfect them during their formal educations.

Today, when students start to program, they generally begin by learning a

programming language. They practice on toy problems and develop the

personal skills and techniques to deal with issues at this toy problem level. As

they take more courses, they improve these methods and soon find they can

develop fairly large programs relatively quickly. These programming-in-the-

small skills, however, are inherently limited. While they may have sufficed on

small-scale individual tasks, they do not provide an adequate foundation for

solving the problems o f large-scale multiperson projects.

Gregory E. Russell 133 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Software Development Process

This [software application] follows a fundamentally different strategy. It

scales down industrial software practices to fit the needs of small scale

program development. It then walks you through a progressive sequence of

software processes that provide a sound foundation for large scale software

development. Once you have learned and used these practices on small

programs, you will have a solid foundation on which to build a personal

software engineering discipline.

The principal goal of [C-ProMPT] is to guide you in developing the personal

software engineering skills that you will need for large-scale software work.

History

I started teaching graduate Software Engineering courses in 1988. Right away I

recognized that the students lacked discipline in all aspects of software development. To

add some degree of discipline to the students’ software engineering academic

environment, I developed a set o f document and coding standards. The standards

improved the software development environment, however, a lot of work was still

needed to improve the academic software development processes.

The document and coding guidelines and standards have undergone almost a

dozen changes since I started using them in my courses. The initial set o f document

standards were a subset of the Institute of Electrical and Electronics Engineers (IEEE)

and Department of Defense (DOD) document standards. Both the document and coding

standards were revised at least twice a year at the end of each computer science and

software engineering project course. The project team members would make change

recommendations. If the recommendations were valid, I would change the standards.

About a year ago, I realized that the standards were simplified down to “toy”

standards. They were not challenging for either the undergraduate senior level and

graduate students. The students were missing an important software development

component, negotiating with management to modify the project team’s compliance with

Project Demonstrating Excellence 134 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Software Development Process

the organization’s standards. I reviewed my standards and the new IEEE and DOD Mil-

Std-498 standards. The new IEEE and DOD standards made sense; they were simpler

(especially the DOD standards) and provided several ways to document the newer

software engineering analysis and design methods. My standards were modified to reflect

the IEEE and DOD standards changes.

The C-ProMPT document standards are more complex. However, the students are

encouraged to review the standards and chose the components that they need to manage

their project. The students have to justify why they have to deviate from the standards.

This process provides another software development learning experience for them.

The coding standards were not changed very much over the past three years. The

students and faculty recommended that I clarify several of the standards and guidelines

and add a couple of guidelines, for example, commenting guidelines.

When I started teaching at National University the computer science and software

engineering students were not required to take technical report writing. Most of the

students did not know how to write technical documents. None of the students knew

anything about document design concepts, that is, how much white space to use, when to

use bold and italics for emphasis, the appropriate use of graphics, etc. The students’

information in their documents were fine, but their document esthetics were horrid. The

bottom-line was that their documentation was not enjoyable to read.

To change this weakness, I developed the Document Design Fundamentals. The

design fundamentals covered the essential document esthetics. This subject became part

of my document standards lecture. Right after I introduced the design fundamentals the

students documentation esthetics improved tremendously. Their documentation was easy

to read and assess.

In 1993,1 started using Word for Windows instead of WordPerfect. One of the

unique features o f Word was the ability to write Windows based software applications

within the Word document. In other words, the document could be automated for specific

tasks. After spending about six months experimenting with Word and WordBasic (Word

Gregory E. Russell 135 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Software Development Process

for Windows programming language), I developed the software engineering document

templates. These templates were based on the C-ProMPT software engineering document

standards and incorporate the document esthetics as recommended in the Document

Design Fundamentals. The templates allowed the students to concentrate on the technical

material instead of the document esthetics.

Right after I developed the Word for Windows document templates, a student

asked if I had all the guidelines, standards, document design fundamentals on-line. At

that time, the entire suite of guidelines and standards barely fit into a 3-inch binder. The

students were required to bring their copy of the suite to class. Thanks to the student’s

question, C-ProMPT was bom.

Requirements

Software

The requirements for this system were fairly simple. The system had to provide

the following:

Software Engineering Document Standards

Proven academic software engineering standards based on IEEE and MIL-Std-498

standards. The following standards were required for the C-ProMPT software application:

• Software Development Plan

• Software Project Plan

• Software Requirements Specification (multi-variant)

• Preliminary Software Detailed Design (multi-variant)

• Software Detailed Design (functional)

• Software Detailed Design (object-oriented)

Project Demonstrating Excellence 136 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Software Development Process

• Software Test Plan and Test Procedures

• User's Manual

• Software Test Case Specification

• Test Case Incident Report

• Test Case Log Report

• Test Summary Report

The standards were based on the work of Gregory Russell, Brad Bowes, Chris

Kolonis, and Dan Osier, National University, Sacramento, Computer Science / Software

Engineering Quality Management Team

C and C++ Programming Language Coding Standards

Standards provide consistency and are specifications for a preferred development

method. They also provide a framework for greater creativity. The C-ProMPT software

application shall provide at a minimum C coding standards that can be used for C++

programmers. The standards shall use proven academic programming standards based on

common software industry practices and guidelines. C-ProMPT shall provide the

following coding standards:

1. General coding standards

• suggested use of comments

• code reviews

• simplicity o f design and implementation

2. Files

• file header format

• file identification format

• file modification format

Gregory E. Russell 137 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Software Development P rocess

• file naming conventions

• size of source files

3. Functions

• function header format

• function prototypes

• lexical rules for functions

• methods of coupling modules together

• placement of functions in the source file

• place of main() in the source file

• suggested size of functions

4. Data and Variables

• choosing variable names

• lexical rules for variables

• maintainability of constants

5. Operators

character tests

dependencies on evaluation order

lexical rules for operators

order of side effects

parenthesis

6. Control Statements

• lexical rules for control structures

Project Demonstrating Excellence 138 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Software Development Process

Document Design Guide

I have found that most of our students do not have any training in document

design. C-ProMPT shall provide a document design help system that will provide the user

with basic document design, layout, and typography. The guidelines shall use the current

software industry standards (Hewlett-Packard, Intel, or Sun Microsystems) but modified

for academic use.

Automated Software Engineering Document Templates

C-ProMPT shall include Microsoft Word for Windows document templates that

are based on the C-ProMPT software engineering required document standards. The

templates shall guide the technical writer through the documentation composition

eliminating errors and preventing incorrect formatting. The templates shall reduce the

documentation composition time by a minimum of 20%.

The following software engineering documentation templates required for the C-

ProMPT software application:

• Software Development Plan

• Software Project Plan

• Software Requirements Specification (multi-variant)

• Preliminary Software Detailed Design (multi-variant)

• Software Detailed Design (functional)

• Software Detailed Design (object-oriented)

• Software Test Plan and Test Procedures

• User's Manual

At a minimum the templates shall provide the following features:

1. Automated input for:

Gregory E. Russell 139 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Software Development Process

• Project name

• Developer’s company name, address, city, zip code, voice

phone, fax phone

• Client’s name

• Developer or team member names

• Client representative’s name

• Project manager’s name

• Quality assurance manager’s name

• Project leader’s name

2. Automatic caption for figures and tables

3. Automatic table of contents, list of figures, and list of tables generation

and update

4. Generic text for standard paragraphs

5. Title page, record of changes, copy-right notice, and appropriate

headers

6. Automatic insertion of iterative sections, design document only (for

example, multiple objects and methods)

7. On-line help for each template feature

8. Linkage to C-ProMPT help system

Software Estimation Tool

C-ProMPT shall provide a documentation size and cost estimation tool. The

documentation estimation tool is based on my senior technical writer experience and

research.

Project Demonstrating Excellence 140 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Software Development Process

User Interface

The C-ProMPT application shall use the interactive design principles as describe

in Shneiderman92 and Hix93:

1. Strive for consistency.

a. Sequence of actions shall be consistent from screen to screen.

b. Prompts, menus, and help screens shall use identical terminology.

2. Enable frequent users to use shortcuts.

a. If appropriate, abbreviations, special keys, hidden commands, and

macro facilities shall be used to reduce user response times

3. Offer informative feedback.

a. The system shall provide visual feedback for operations that take

longer than 2 seconds. The feedback shall consist of a window

indicating:

• The time remaining for the operation for operations greater

than 5 seconds

• A “standby” message indicating that the operation will

complete within 3 seconds.

4. Offer simple error handling.

a. The system shall incorporate error handling routines that will

prevent obvious user input errors. These routines will check user

entries for appropriate data types; for example, an integer value is

expected, the error routine will reject all entries except integers. An

error message will inform the user of the desired input as well as what

the user did wrong.

b. The system will validate all user entries and database retrievals.

Gregory E. Russell 141 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Software Development Process

5. Permit easy reversal of actions.

a. The user shall not have to retype the entire erroneous command but

shall be allowed to edit the data entry. For example, if the user entered

1289e76 when he wanted to enter 1289376, the system shall allow the

user to backspace to delete the “e” and enter “376.”

b. The system shall provide an Undo and Commit feature for all

database entries. The “Undo” command will back the database to the

point of the last “Commit” command. The “Commit” command will

perform all user entries and actions perform since the last “Commit”

command.

6. Support internal LOCUS of control.

a. The system shall provide an atmosphere where the user has the

impression that they are in command. For example, if the system is

waiting for data entry, use this feedback message, “Ready for next data

entry,” rather than “Enter next data entry.”

7. Reduce short-term memory load.

a. The system shall have tabs that will inform the user of the location

of each screen.

b. The system shall have all “Help” command buttons located in the

same area for each screen.

c. The system shall have all “information blocks” located in the same

area for each screen.

d. The system shall use command buttons to access the C-ProMPT

help topics.

8. Organize the screen to manage complexity.

Project Demonstrating Excellence 1 4 2 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Software Development Process

a. The system shall limit major groups to a maximum of seven items.

The major groups shall be easy to recognize by using either a color

scheme or larger font sizes.

b. The system shall limit minor items within a group to a maximum

of seven items.

Production Tools

The selection criteria for the production tools shall be:

1. Rapid prototyper tool for Microsoft Windows software application and

on-line help development

2. Borland’s Database Engine an integral part of the development tool

3. Uses a common programming language, for example, Ada, Basic,

Pascal, C, or C++

4. Modularity for low coupling and high cohesion

5. Generates compact executable code without the use of external support

files

6. Converts Microsoft Word documents to RTF files suitable for

Microsoft Windows Help files.

Based on the above criteria, Borland’s Delphi was selected as the software

application development tool. Delphi is based on Borland’s Object Pascal and uses

similar constructs as Ada (specification and body). Dephi can use Paradox data files

without additional programming. One of the features of Delphi is that you can build and

access Paradox tables without having a licensed copy of Paradox, a plus. Delphi utilizes a

compiler, so its code is very compact and usually in one executable file (unless you are

using VBX extensions)

Microsoft Visual Basic was not selected because it used an interpreter and

required several support files to run.

Gregory E. Russell 1 4 3 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Software Development Process

RoboHELP was selected as the best full-featured authoring tool for creating

Windows Help systems and stand-alone hypertext information systems. RoboHELP

greatly simplifies the process of creating and maintaining Windows Help files. It

integrates fully with Microsoft Word, version 6.0a. It also provided custom Help buttons

for Delphi which eliminated the need to program context sensitive Help routines for C-

ProMPT. Another feature provided was a complete Help debugging tool.

Design

The primary criteria for the design was very simple, the C-ProMPT software

application must be easy and fun to use. The secondary criteria was that it must provide

support for the concepts learned in the computer science and software engineering

courses.

Rapid Prototype Design and Development

I made the decision to develop C-ProMPT as a prototype software application.

The prototype would demonstrate the design concept rather than a fully developed

system. Jenny Preece [Preece93] defines a prototype system as:

... a software system that simulates or animates the structure, functionality,

operations or representations of another system. A prototype should be cheap

to produce and should take only a short time to develop.

A prototype is a software system that:

• actually works, that is, it is not an idea or drawing

• will not have a generalized lifetime; at one end of the spectrum it may

be thrown away immediately after use, at the other end it may

eventually evolve into the final system

• may serve many different purposes

Project Demonstrating Excellence 1 4 4 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Software Development Process

• must be built quickly and cheaply

• is an integral part of an iterative process which also includes

modification and evaluation.

A prototype will concentrate on some aspects of an interactive system and

ignore others, and may differ from final systems in size, reliability, robustness,

completeness, and construction materials.

• Full prototypes contain complete functionality but provide less

performance than the final system.

• Horizontal prototypes demonstrate the operational aspects o f a system

but do not provide full functionality.

• Vertical prototypes contain full functionality but only for a restricted

part of a system.

C-ProMPT was developed as a combination of a horizontal and vertical prototype

system. The PSP Process is not fully functional, but the other C-ProMPT topics are fully

functional.

Graphic User Interface Design

I wanted the graphic user interface (GUI) design to employ human-computer

interactions concepts. These concepts are described by Jenny Preece [Preece93]:

The user interface has a specific form of dialogue which is designed to

facilitate user computer interaction. This dialogue enables the user to map (or

relate) the details of tasks to the functionality of the computer system.

A well-designed user interface makes it easy and natural for a user to break

down (or decompose) a task into subtasks and map them on to the system's

functions. A poorly-designed computer system requires its user to decompose

tasks in unnatural ways, and the ensuing mapping is then prone to errors.

Gregory E. Russell 145 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Software Development P rocess

An important part of human-computer interaction (HCI) work, therefore,

involves understanding the nature of users' tasks and the ways in which users

most naturally decompose them. This, in turn, requires understanding the

characteristics of users themselves and the influence on their behavior of the

context in which they work. In addition, designers have to take into account

technical and logistic considerations.

The goals of HCI are to develop and improve systems that include computers

so that users can carry out their tasks:

• safely

• effectively

• efficiently, and

• enjoyably.

These aspects are collectively known as usability. A well designed computer

systems with good usability can:

• improve the performance of the workforce

• improve the quality of life

• make the world a safer and more enjoyable place to live in.

The C-ProMPT GUI design incorporated most of the features described by

Preece. In order to develop and integrate the screen designs, I needed to understand the

following:

• cognitive psychology and organizational psychology

Human-computer interaction is essentially cognitive, that is, it involves the

processing of information in the mind. The overall aim of applying cognitive

psychology to system design is to ensure that this information processing

activity is within the capabilities of the users’ mental processes.

Project Demonstrating Excellence 146 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Software Development Process

In order to maximize the software application’s use when introduced into the

academic project environments it is also necessary to apply organizational and

social psychology.

• established techniques for input, output and user support provision such as

menus and forms, cursor control and on-line aids (industry GUI guidelines

and standards)

• experience of other designs and knowledge of other systems

The entire C-ProMPT design dealt with cognitive psychology, some

organizational and social psychology, GUI guidelines (IBM and Microsoft), and

examples from other Windows based software applications.

Each GUI screen dealt with a specific topic and related sub-topics. Besides using

related information in each screen, the user’s learning ability was taken into consideration

by designing an intuitive navigation system. Each screen has its major topics designated

in bold fonts and within separate panels. The user automatically scans the major topics

prior to scanning the sub-topics. For example the following screen contains six major

topics and less than eight sub-topics per major topic.

iMm i A PSP Procettet APSP Irabucboos APocumenUj

Gregory E. Russell 1 4 7 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Software Development Process

All of the C-ProMPT screens were designed in a similar manner, with some minor

exceptions. All the screens’ layout design is similar, except the PSP Process screen. This

screen’s layout provides a PSP process sequence graphical representation. However, the

layout follows the same design concepts. The following screen shows the difference in

style.

1. Cnrninnh P ro jo tt {><*{*

& Planing fftflckmg
's . Oosiiin

[PSPInttructiom^OocuTtenbXCodng StaodadtADocunenl 5 taodardt A S pecial Toper

This screen has 12 push buttons and one “legend” panel. The push buttons were

organized into six color-coded major topics. By using color-coded topics, the push

buttons become sub-topics and maintain the layout design of the other C-ProMPT

screens.

Help Screen Icons

The C-ProMPT help screen icon design also followed HCI design concepts. There

are several advantages in using icons instead o f command names, in that, in most cases,

they are easier to learn and remember. They achieve this by:

• providing more visual information about the underlying object

• acting as powerful mnemonic cues

Project Demonstrating Excellence 148 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Software Development Process

• explicitly showing the relationships between system objects

As I designed the Help Screen icons I had to take into account:

• The context in which each icon was used. This is because the context

influences the comprehensibility of the icons.

• The task domain for which they are used.

• The graphic form that is used to depict the object.

• The nature of the underlying object being represented.

• The extent to which one icon can be discriminated from other icons displayed.

Since most of the “objects” were related in some manner, I decided to design the

icons using a combination of graphics and text. This combination is useful in that the user

will eventually associate the graphic symbol with the text.

Guidelines and standards

According to Jenny Preece [Preece93]:

Guidelines occur in several forms:

• High-level and universally applicable design principles need to be

employed to direct the design and integrate ideas on design into a sound

framework

• Design rules are sometimes used to instruct a designer how to achieve a

principled design that is appropriate for the particular system in question.

• Systems should conform to international, national and industry standards.

Ultimately, there are only good and bad design decisions, which reflect the

way in which design guidelines are applied. Designers need to choose and

apply the design guidelines intelligently at the right time. Attitude, experience,

insight and common sense help in this process.

Gregory E. Russell 149 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Software Development P rocess

Guidelines

The term guidelines encompasses both the broad principles, which offer

general advice and provide a sound foundation for a design, and the specific

design rules, which direct details of a design. Guidelines are found in a variety

of places:

• Professional, trade and academic journal articles provide a good source of

information about current practice and experience.

• General handbooks offer a coherent and comprehensive coverage of the

area.

• House style guides detail the standard functional and display techniques

for particular computers or organizations. For example, Apple Computer's

Inside Macintosh describes the use of the Macintosh style windows, scroll

bars and icons.

• In a brief introduction such as this, we cannot hope to cover all the details

of guidelines; however, in most reviews, a number of principles stand out.

• Know the user population. This can be difficult to achieve, especially

when a diverse population of users has to be accommodated or when the

user population can only be anticipated in the most general terms.

Knowing the user includes being sympathetic to different user needs by,

for example, providing program short-cuts for knowledgeable users,

promoting the 'personal worth' of the individual user and allowing users to

perform tasks in more than one way.

• Reduce cognitive load. This concerns designing so that users do not have

to remember large amounts of detail. Methods for achieving this include:

♦ Minimize memorization by using techniques such as selecting from a

menu rather than remembering command names, using names for

objects rather than numbers, and giving the user access to

Project Demonstrating Excellence 1 5 0 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Software Development P rocess

(understandable) system documentation. However, care must be taken

to apply principles appropriately.

The famous short-term memory limitation (that people can

remember only 7 +- 2 things) does not mean that menus should be

restricted to seven options! Users need not remember specific

items in any detail if they can select from a displayed list.

♦ Minimize learning by being consistent, drawing on knowledge of

similar systems and by choosing meaningful names and symbols.

• Engineer for errors. A common excuse is that a problem occurred because

of “human error.” But people will always make errors and indeed have to

make errors in order to learn. Engineering for errors includes taking

forcing actions which prevent the user from making an error (or at least

make it more difficult!), providing good error messages, using reversible

actions which allow users to correct their own errors and providing a large

number of explicit diagnostics.

• Maintain consistency and clarity. Consistency emerges from standard

operations and representations and from using appropriate metaphors that

help to build and maintain a user's mental model o f a system. A designer

can only have ideas about what is clear based on initial information about

users. Designs must be confirmed with users - through prototyping and

evaluating designs — to be certain that the system's interface really is

clear.

Standards

Standards concern prescribed ways of discussing, presenting or doing

something. Standards seek to achieve some form o f consistency across

products which are of the same type. We are familiar with standards in many

walks of life - standard colors for electrical wiring, standard controls on cars,

standard shoe and clothing sizes. Establishing standards encourages:

Gregory E. Russell 151 Project Demonstrating Excellence

with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Software Development Process

• A common terminology. For example, standard measures o f usability or

performance mean that designers and users know that they are discussing

the same concept. All systems of the same type can be subjected to a

standard benchmark that facilitates comparisons.

• Maintainability and evolvability. Standard implementation techniques

facilitate program maintenance because all programs can be expected to

have a shared style and structure. Additional facilities can be added to a

system if its external interfaces are of a standard form.

• A common identity.

• Reduction in training.

Coding Guidelines and Standards

The coding guidelines and standards used in C-ProMPT were derived from

various Hewlett-Packard and Institute of Electrical and Electronics Engineers (IEEE)

sources. The standards were initially modified for an academic environment. Over a

period of two years, the standards were enhanced or deleted, and added based on their use

in the classroom and by suggestions from students and instructors.

The C-ProMPT on-line help file describes the standards and guidelines required to

create readable and maintainable source code. The following areas were incorporated

within the coding standards and guidelines:

File describes the makeup of the file header, file size,

and naming conventions.

Function describes the makeup of the function header,

placement of prototypes and main (), function

size, and coupling

Operators describes the allowable dependencies on

Project Demonstrating Excellence 152 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Software Development Process

evaluation order, character tests, lexical rules for

operators, order of side effects, and placement of

parentheses

Variables

Data and describes variable naming conventions, lexical

rules for variables, and constant maintainability

Control Structure describes the lexical rules for control structure

Information

Additional describes the importance of code reviews, the

glossary of terms used, design simplicity and

implementation, the difference between standards

and guidelines, why coding standards and

guidelines are important, and side effects when

writing macros

Document standards

The document guidelines and standards were derived from the Institute of

Electrical and Electronics Engineers (IEEE) and the Department of Defense standards.

The guidelines and standards used in C-ProMPT have gone through several years of

testing with over 50 computer science and software engineering academic projects. The

students provided feedback via weekly status reports (one of the standard documents) and

weekly discussions and out-briefings with the students either individually or in groups.

The result is the C-ProMPT Document Guidelines and Standards. These guidelines and

standards fall into five document categories and two support categories. The description

of each category is as follows:

Why Document Provides background information as to why

Standards? document standard usage is important for a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mature practitioner or organization.

Gregory E. Russell 153 Project Demonstrating Excellence

www.manaraa.com

The Software Development Process

Initial Document

Preparation

Planning Documentation

Software Requirements

Documentation

Software Design

Documentation

Software Test

Documentation

Describes the techniques to automate the

document process and how the specific sections

within the documents should be formatted.

Describes the format and topics that should be

included in the Software Development Plan,

Software Project Plan, and Software Test Plan

and Test Procedure documents.

Describes the format and topics that should be

included in the Software Requirements

Specification (SRS) document. Several analysis

and requirement methods are discussed

(functional, object-oriented, object, etc.)

Describes the format and topics that should be

included in the Software Design Documentation.

Functional and object-oriented design documents

are presented.

Describes the documents required to fully satisfy

the testing requirements.

Project Weekly Summary Describes the team status reports for the B.S.

Reports Computer Science and M.S. Software

Engineering project courses.

Document standard templates

I designed and created several Word for Windows software engineering document

templates that allow the students to quickly create and manage the changes required

Project Demonstrating Excellence 1 5 4 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Software Development Process

during a software project. These templates have gone through the same evolutionary

process as the document guidelines and standards.

The document templates are accessed through the C-ProMPT Document Topic

screen.

Software Engineering Special Topics

The Software Engineering Special Topics screen allows the user to select various

software engineering topics that will help them to understand software analysis, design,

risk analysis, unit testing, document design principles, and the Software Engineering

Institute's Software and People Capability Maturity Model. The topics are broken down

into three main topics, software development, software engineering references, and a

catch all topic, personal and organization

Software Development

The Software Development topic provides essential information on how to write a

good software requirements specification, software design fundamentals, and unit testing

techniques. It contains the following:

What is a good Software Requirements Specification? — Provides the

background information for writing a good SRS.

Software Design Fundamentals — Describes the various methods and

notations used to adequately depict the design concepts using text and graphical

notations.

Unit Testing Techniques — Describes a standard approach to software unit

testing that can be used as a basis for sound software engineering practice.

Gregory E. Russell 1 5 5 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Software Development Process

Software Engineering References

The references topic contains a comprehensive glossary containing the most used

Software Engineering terms and a Software Engineering bibliography partitioned into

specific software engineering topics.

Personal and Organization

This area contains background information on the Personal Software Process, risk

management, document design fundamentals, and formal technical reviews. It also

contains a quality improvement story that provides another look at how to perform

quality improvement in your project or organization.

Document Design Fundamentals — This section will teach a technical writer

unfamiliar with document design some of the basic tenets o f layout and typography. It

will also impart to the reader a sense of what constitutes good graphic design.

Quality Improvement Story — Some people have a hard time digesting

information about quality improvement or any other more technical issue unless it is put

in the form of a story. The Japanese often use little parables to teach the concepts of

quality improvement. The following story teaches quality improvement from just such a

perspective.

Personal Software Process Background — The Personal Software Process

(PSP) is a self-improvement process designed to help you control, manage, and improve

the way you work. It is a structured framework of forms, guidelines, and procedures for

developing software.

Risk Management — This section describes how Rockwell Collins

Commercial Avionics Engineering Process and Support group implemented Risk

Management into their organization, (courtesy of Art Gemmer)

SEI - CMM — Describes the Software Engineering Institute's People and

Software Capability Maturity Model.

Project Demonstrating Excellence 1 5 6 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Software Development Process

Formal Technical Review Fundamentals — This paper examines a case study

of the characteristics of an organization's culture that can inhibit the effective

implementation of a formal risk management program. It presents a “Learning Model”

that has been used to identify and deal with organizational needs and their associated

cultural issues.

Document Cost and Effort Estimation

A major part o f any software project is the required engineering documentation.

Estimating the effort required to produce any type of documentation requires an

understanding of the problems of documentation production, publication, and maintenance.

The document and cost effort estimation used in C-ProMPT were derived from my

technical writing experience and interviewing several other technical writers and editors.

This estimation method is for a single technical writer, not a team of writers. However, with

the addition of statistical analysis and probability formulas the estimation method could be

modified for a team of writers. This estimation method is performed as follows:

First, estimate the document production schedule. As a guideline you can

use the following approximate percentages of the total time spent on each document

milestone:

1. Develop a document release plan that would include the scope and

format, (technical writer and responsible engineer) — 2%

2. Generate draft, (technical writer and responsible engineer) — 35%

3. Review draft, (technical writer, responsible engineer, technical editor,

and software manager) — 20%

4. Generate final draft, (technical writer and responsible engineer) —

25%

5. Review final draft, (technical writer, responsible engineer, technical

editor, and software manager) — 3%

Gregory E. Russell 1 5 7 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Software Development Process

6. Produce end-user documentation, (technical writer and technical

editor) — 15%

Once you have the schedule completed, you can then complete the

document cost estimate. Various cost estimates are used in the computer industry

to estimate the final cost and time required to produce a document. One such

method used is as follows:

1. Estimate the page count of the document. This can be done by using

the page count of similar documents or the experience of the document

planner.

2. Multiply the page count by 3 to 6 hours for an update OR 5 to 8 hours

for a new document. The result is the documentation completion time

in hours.

Note: The low end hours per page does not include any explicit

fudge factor. The low end is usually used for experienced technical

writers and it is the barebones minimum time required, barely taking

time for vacations, replacements, illness, management, meetings, and

so forth into account. The upper end hours per page is used for

inexperienced technical writers. The upper end does account for

vacations, replacements, illness, management, meetings, and so forth.

Usually an experienced technical writer would use a mid-range value

to estimate the time required to complete the document.

3. Divide the documentation completion time by 35 hours per week. Use

weeks rather than days to calculate documentation time for large

projects. Weeks and months are less complicated and more desirable

for schedules.

4. Divide the documentation completion time in weeks by the number of

engineering/writer/production staff available for the document. The

result is the total number of weeks required to complete the document.

Project Demonstrating Excellence 1 5 8 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Software Development P rocess

To determine the estimated cost breakdown for the document use the following

percentage values:

• Technical Writers — 65% of the total hours required to complete

the document times the average salary of the technical writers that will

do the engineering interviews, research, writing, and review the

document draft updates and modifications.

• Engineers — 25% of the total hours required to complete the

document times the average salary of the engineers that will participate

in the interviews and preliminary and final document reviews.

• Technical Editors — 6% of the total hours required to complete the

document times the average salary of the technical editors that will

check the document for correct grammar, spelling, and proper syntax.

• Managers — 4% of the total hours required to complete the

document times the average salary of the managers that will review the

preliminary and final document.

• Overhead — the cost required to support the above personnel. This

would be equipment, work space, support personnel, and so forth.

Stand-alone C-ProMPT Help Files

The C-ProMPT help system files were designed to work as a stand-alone system.

There are four help systems, PSP Process, coding guidelines and standards, document

guidelines and standards, and software engineering special topics.

The C-ProMPT software application is linked to specific topics within each C-

ProMPT help system. This linkage is part of the RoboHelp functionality.

Another feature of the C-ProMPT help systems is “hyperview.” This feature

creates a “topic tree” of the major topics contained within the help file. The user can

transverse the tree by pointing and clicking on a help topic within the tree. Hyperview

Gregory E. Russell 1 5 9 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Software Development Process

also allows the user to print multiple selected topics rather than one topic at a time as in

the standard Windows help system.

The C-ProMPT help file system also contains an enhanced search engine that

allows the user to search for any specific word and phrase. This feature is superior to the

standard Windows help system, which only allows the user to search major topics or user

defined key words.

Construction

Support Documentation

C-ProMPT Help Files Conversion

As I mentioned earlier, I decided to use RoboHelp to write the Windows Help

files. The makers of RoboHelp designed this tool to work within Word for Windows.

This was great, because it reduced the development environment complexity. There was

just one problem; the guidelines and standards documentation were written in

WordPerfect for Ventura Publisher. I had to strip out all the Venture Publisher embedded

command verbiage and then convert the document over to Word for Windows.

Essentially, I had to reformat the entire document suite. Once this was done, the

Windows Help file development was straight forward.

RoboHelp is a great tool. It converts a Word document by changing the headings

to help topics (you decide which headings to convert to topics) and then automatically

creates the hyperlinks and topic key word links to the topics. I had all the help files

created within three days. If I had created the help files manually it would have taken

three to four months. It was so fun and easy to create a help file, I had time to add more

software engineering development support information to C-ProMPT.

The biggest problem with the Windows Help files is the graphic format. All my

graphics for the guidelines and standards suite were in GEM format. The graphic format

Project Demonstrating Excellence 1 6 0 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Software Development Process

required for the help file was WMF or Windows Meta-File format, a very simple vector

graphic format. I had to convert almost a hundred GEM graphic files to WMF format. I

used CorelDraw, version 3.0, as the converter. The results were disappointing. The

converted documents were unusable. The time I had saved in developing the help files

would now be used to redo and redraw the graphic files. I told one of my co-workers

about this problem. He gave my a copy of CorelDraw, version 5.0, and said that this

version should take care of the problem. This CorelDraw version did the trick. The

converted GEM graphic files were acceptable.

There were a lot of minor problems to overcome while developing the help files.

The Windows Help compiler can not compile Word for Windows documents; the

compiler compiles another text format called Rich-Text Format or RTF. RoboHelp

converts the Word for Windows documents to RTF format. The Windows Help compiler

then uses the RTF files to create the Windows help files. Unfortunately, the RTF files

only use the lower set of ASCII characters. That means that the “, ”, ‘, ’, and —

characters plus all the symbols would not convert to RTF format. The character is

stripped from the document. I had to go through all the documents and change the “ and ”

characters to a " character and the ‘ and ’ characters to 1 character, (so if you find a word

that should be possessive and its plural you now know the reason).

Another minor problem dealt with Word for Windows. All word processors

maintain a paragraph formatting table for each paragraph in the document. This

formatting information includes the tab set, indentation, font size and type, bullet type,

etc. All this information increases the file overhead and file size. To reduce the file size,

Word doesn’t include all the paragraph formatting data for paragraphs that repeat the

previous paragraphs format. This is great for Word documents but a nuisance for Word to

RTF converted documents. RTF files require the formatting information for all

paragraphs. So, if the Word document had a series of bullets or numbered paragraphs, the

first RTF bullet or numbered paragraph was formatted correctly; the subsequent

paragraphs were not. To overcome this problem, I had add an extra tab to all the odd

Gregory E. Russell 161 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Software Development P rocess

bullet and numbered paragraphs. This little operation would trick Word and force it to

add formatting information to all the document paragraphs.

It took only three days to create the Windows Help files. It took about a week to

make the necessary changes to the Word documents. The Word to RTF and GEM to

WMF conversion processes were under control and properly converted.

The next stage required that I add the graphic files to the help files as pop-up

topics. This meant that I had to create hyperlinks in the documentation to each graphic

file. Thanks to RoboHelp this was again a very straight forward procedure and did not

take very long.

The first set of help files was primitive. I wanted more pizzazz. I added the main

topic screen push button links to the major topics rather than a simple list o f topics. The

push button links required an icon and text. The text would help the user to recognize the

relationship between the text and icon symbol. However, the icons had to have a visual

relationship to the subject material; otherwise the users’ mind would refuse to recognize

the text and icon relationship. I spent a couple of weeks designing the icons and then a

week revising them after getting some feedback from my co-workers. The push buttons

added the pizzazz to the help file main topic screen.

The C-ProMPT help screens were completed as stand-alone help files. This was

done so that the students and evaluators could test the help files before the C-ProMPT

software application development began. This testing process took about a month. The

students and evaluators did not find anything wrong with the help files. One evaluator did

suggest that I put more information into the help file suite. The students were excited to

have the guidelines and standards on-line; they discovered that they could now cut and

paste the help files subject material into their documents. The C-ProMPT help files

exceeded the requirements, now onto the C-ProMPT software application.

Project Demonstrating Excellence 1 6 2 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Software Development Process

C-ProMPT Software Application

As RoboHelp reduced the effort required to develop the C-ProMPT help files,

Borland’s Delphi did the same with the C-ProMPT software application. Delphi is based

on Object Pascal, however, the development environment is component based. In other

words, you select the component (button, panel, edit box, list box, etc.) place it on the

form (Windows screen) and position it where you want. Basically, that is all you need to

do to program the application. Delphi writes the Pascal code and sets-up the linkage to

the Windows Application Language Interface (API). Delphi hides the Windows

development complexity from the programmer.

The C-ProMPT screens were constructed based on the design criteria and

RoboHelp’s help file linkage constraints. The “PSP Instruction,” “Coding Standards,”

“Document Standards,” and “Special Topics” screens and Windows Help file linkages

were constructed within three days.

The “Document” screen took about a week to construct. This screen required the

user to select either a PSP form, template, or document example; then the module would

launch Word for Windows and load the document. Unfortunately, the literature on how to

do this was almost non-existent, at least, for the Delphi environment. After buying four

books on Delphi programming, I found a short paragraph in one reference book that

referred to a non-existent feature in Delphi and said that this was easier than using the

Windows API ShellExecute routine. This was the Windows API routine I was looking

for. I still had to experiment with this routine to determine how it worked, since the

routine’s literature was very cryptic. I found out that I had to use the routine to launch

Word for Windows and then again to get Word for Windows to load in the selected

document. I now had the “Document” screen working.

There is a memory allocation problem when you run C-ProMPT and Word for

Windows at the same time. C-ProMPT uses between 10 to 20% of the memory resources

depending on the computer system and RAM. Word for Windows is a well-known

memory hog. Word also is known to allocate memory without releasing it back to the

system when Word is closed. This “feature” was confirmed when I opened and closed

Gregory E. Russell 1 6 3 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Software Development Process

several instances (copies) of Word. Eventually, I would run out of memory and Word

would not load. I spent several days trying to find a workaround to this problem, without

success. I also constructed an elaborate exception handling routine that would tell the user

why Word for Windows or the document would not load. However, when I tried using

this routine Word for Windows would not load at all, due to memory allocation problems

(low memory). When I removed the error handling routine, Word for Windows would

load without any problem. (I’m still trying to find out why this is happening. The C-

ProMPT development machine is a 486DX4 lOOmhz with 20 megabytes of RAM.)

Although C-ProMPT does not have an internal error handling routine for launching an

external application, Windows does have an error handling routine (the error messages

are very terse) that will at least let the user know why Word for Windows or the Word

document will not load.

The “PSP Process” screen was the last screen to construct. I intended to automate

all the PSP processes and manage the data with a Borland Paradox database. Again, the

literature was very cryptic on relational database usage in a Delphi application. There was

a lot o f information on using single tables in a form or using Structured Query Language

links to external databases, but practically none on using multi-tables within one form. I

find out that developing an extensive database system was not very straight forward as

the Delphi hype said. If I wanted to construct the automated PSP processes, I would have

to develop a relational database management system with integrity and referential checks.

I decided that this project was well beyond the scope of the PDE. I backed off the

automation process and just set-up the screen as a “Software Development Phase”

information screen. That is, each phase would have a push button that would indicate

which forms were required for that specific development phase. I also incorporated a

document production estimate algorithm that I developed back in 1991 for Hewlett-

Packard. This algorithm was based on my technical writing experience and experiences of

dozens o f other technical writers. Since C-ProMPT is a concept prototype, I felt these

changes fell in line with the initial requirements.

Project Demonstrating Excellence 164 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Software Development Process

The total time spent developing the C-ProMPT software application took about

three months. This included researching the RoboHelp and Delphi development

environments and features, overcoming problems with the development environment

“features,” and tweaking the application. Overall, the C-ProMPT software application

exceeded my expectations and the initial requirements.

Testing

Unit Tests

Unit testing was fairly straight forward. For the most part, these tests consisted of

the following:

• hyper-link tests

• help file textual continuity

• screen navigation

• database linkage

• data retrieval and storage

• error handling capability

Problems:

Most o f the errors found were syntactical, logic, and design errors. In all cases the

defect removal took less than five minutes. While correcting some of the defects I

accidentally introduced defects back into the module. This was primarily due to my

misunderstanding of Windows Application Programming Interface (API) commands,

Dephi programming environment, and Object Pascal.

Testing Hyperview was a very simple process; click on the Hyperview button.

Unfortunately, it did not work as expected. An error message stated that the “Help

Gregory E. Russell 165 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Software Development Process

Browser” did not recognize Microsoft meta-files. A quick call to Blue Sky Software

resolved the problem; the Hyperview and Hyperfind DLL files (hyprview.dll and

hyprfind.dll) were defective. I downloaded the good versions via the Internet FTP

services. I started the Hyperview/HyperFind test, and it ran successfully.

System Tests

The Delphi programming environment reduce the systems testing requirements.

The environment keeps tabs on the modules within the project and automatically

recompiles a module if it has been edited. Since this was single person prototype project

working within a rapid prototyping environment, system tests were not required.

Usability Tests

C-ProMPT did require usability tests. These tests were carried out by four

individuals. Refer to Section 3, Software Usability Testing, for more information.

Future Enhancements

Currently all the Personal Software Processes are manually completed by the

student. I plan to fully automate the Personal Software Process. The C-ProMPT

application does contain the software “phase” push buttons within the “PSP Processes”

screen, but they are non-operational. The completed C-ProMPT project will automate the

software “phase” processes and will perform the following functions:

1. PROxy-Based Estimating (PROBE) code size estimation tool. This code size

tool is based on Watts Humphrey’s description in A Disciplined Approach to

Software Engineering, pages 117 through 141.

2. A development repository that will contain the following information and

database activities to perform relational database operations in this data:

Project Demonstrating Excellence 166 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Software Development Process

• Project time recording log. This log will contain the actual time spent

in each phase of the project.

• Task plan that will allow the student to record planning estimates for

each task identified to complete plus the actual time spent.

• Schedule plan that will allow the student to record the estimated start

dates and time duration for each task plus the actual start dates and

time duration.

• Operational scenario that describes the likely operational scenarios that

will occur while the student’s application is running. It is also used to

specify the test scenarios.

• Function specification for each module or object.

• State specification for each module or object.

• Logic specification for each module or object.

• Log issues during project (tracking information)

• Test case specification and description for each operational scenario,

function, state, and logic specification.

• Test case expected and actual results.

• Log defect discovered and removed during the project.

Gregory E. Russell 1 6 7 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Software Development P rocess

Project Demonstrating Excellence 1 6 8 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Software Usability Testing

vt'm w w v>y/sss//s/s y/ss‘

This section describes the Software Engineering Academic Project Management

Production Tools (C-ProMPT) evaluators, evaluator selection rational, evaluation forms.

C-ProMPT Evaluators

The C-ProMPT evaluators:

Cindy Powers Computer Science undergraduate student at

National University. Cindy graduated from

National University in 1994. Her project

team was one of three that participated in

several brain storming sessions regarding

the proposed C-ProMPT project. She is

extremely interested in organizational and

individual process improvement.

Dr. Alisher Abbullayeu Computer Science student at National

University. Alisher is a Mathematics

Assistant Professor at National University

with a keen interests in computers and

software development. He is currently

seeking a B.S. in Computer Science.

Alisher attended my Personal Software

Process course and is familiar with the

concepts and practices incorporated with C-

ProMPT.

Jeff Dunlap Software Engineering graduate student at

Gregory E. Russell 1 6 9 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Software Usability Testing

National University. Jeff graduated from

National University in 1994. He was

introduced to the Personal Software Process

while I was teaching the course. Jeff is a

project lead at Intel Corporation. He is also

trying to incorporate sound software

engineering practices within his group.

Dr. T. Joseph Walsh Joe is a Management Information Systems

assistant professor at Capital University.

Joe has at least eighteen years experience in

management information (information

engineering) system development and

software application development.

Harry Wheelis A software practitioner for the State of

California, Employment Development

Department (EDD). Harry is a software

developer at EDD. Harry understands most

software engineering methods and

practices. He is a member of the ad-hoc

Software Engineering Process Group at

EDD.

Evaluator Selection Rational

The evaluators were selected because they represent undergraduate and graduate

level students, teaching faculty, and software industry. All are familiar with software

engineering methods and practicies. Most have used a Computer-Aided Software

Engineering or Software Process Engineering software development tool.

Project Demonstrating Excellence 1 7 0 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Software Usability Testing

Human-Computer Interaction Evaluation Forms

The Human-Computer Interaction evaluation form used is strickly for usability

testing purposes. In other words, the evaluators are checking the user interface for the

following attributes:

HCI Attribute Checks

Screen Character sharpness and legibility

Screen highlighting helpful

Layouts are adequate

Screen sequencing is predictable and easy to
navigate

Terminology and system information Terms are consistent throughout the system

Terminology relationship to work environment

Consistent appearance o f message on screen

Instructions are clear

Appropriate usage of feedback messages

Error message are helpful

Learning Familiarization time required

Exploration and discovery of features

Memory retention of names and commands

Sequencing of tasks

Content and amount of help provided

Tutorial and reference manual content

System capabilities Response time

System performance time

Reliability of the system

System physical characteristics

Undo and correction capability

Needs of novice and experience users

Overall User Reaction Overall experience of the user’s interaction
with the system

Gregory E. Russell 1 7 1 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Software Usability Testing

The evaluators also describe their computer experience background, the computer

system used during the test, and general comments they may have about C-ProMPT.

User-lnteraction Satisfaction Results

The following information indicates the computer systems used by the evaluators,

their past experience, and average rating for each usability attribute.

Type of Systems Used By the Evaluators

Type of hardware: @ 386____Mhz © 486 Mhz © Pentium Mhz

Disk Operating System: © MS-DOS version___________ □ PC-DOS version____

How long have you worked on this system?
□ less than a month □ 1 month to less than six months

□ six months to less than year © 1 year to less than 2 years

□ 2 years to less than 3 years © 3 years or more

On the average, how much time do you spend per week on this system?
□ less than one hour □ one to less than 4 hours

© 4 to less than 10 hours © over 10 hours

Evaluators’ Past Experience

How many different types o f computer systems (e.g., Unix, VMS, Intel personal computers,
Macintosh) have you worked with?

□ none □ 1 □ 2
© 3 - 4 © 5 - 6 □ more than 6

Of the following devices, software, and systems, check those that you have personally used and
are familiar with:

© mouse © text editor © word processor

© workstation © electronic spreadsheet © interactive help system

© graphics software @ computer games © graphic user interface

© electronic mail © process manager software © project manager software

© CASE tools

Project Demonstrating Excellence 1 7 2 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Software Usability Testing

Screen

Usability Attribute Average Rating (1 through 9)

Characters on the computer screen hard to read

8.8

easy to read

Image o f characters fuzzy

8.6

sharp

Character shapes (fonts) barely legible

8.8

very legible

Was the highlighting on the screen helpful? not at all

8.8

very much

Use o f color coded hyperlinks unhelpful

8.4

helpful

Were the screen layouts helpful? never

8.0

always

Amount o f information displayed on
screen

inadequate

8.6

adequate

adequate

2.9

too much

Arrangement of information on
screen

illogical

8.4

logical

Sequence of screens confusing

8.6

clear

Next screen in a sequence unpredictable

8.6

predictable

Going back to the previous screen impossible

8.8

easy

Beginning, middle and end of tasks confusing

8.6

clearly marked

Gregory E. Russell 1 7 3 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Software Usability Testing

Terminology and System Information

Usability Attribute Average Rating (1 through 9)

Use of terms throughout system inconsistent

8.8

consistent

Process management terms inconsistent

8.8

consistent

Does the terminology relate well to the work
you are doing?

unrelated

8.8

well related

Computer terminology is used too frequently

8.8

appropriately

Terms on the screen ambiguous

8.6
precise

Messages which appear on screen inconsistent

8.6
consistent

Position of instructions on screen inconsistent

8.2

consistent

Messages which appear on screen confusing

8.5

clear

Instruction for commands or choices confusing

8.2

clear

Instruction for correcting errors confusing

7.0

clear

Does the computer keep you informed about
what it is doing?

never

7.4

always

Performing an operation leads to a
predictable result

never

7.6

always

User can control amount of feedback never

6.0
always

Project Demonstrating Excellence 1 7 4 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Software Usability Testing

Terminology and System Information (continued)

Usability Attribute Average Rating (1 through 9)

Error messages unhelpful

6.3

helpful

Error messages clarify the problem never

6.5

always

Phrasing o f error messages unpleasant

7.3

pleasant

Learning

Usability Attribute Average Rating (1 through 9)

Learning to operate the application difficult

9.0

easy

Getting started difficult

9.0

easy

Learning advanced features difficult

8.8

easy

Time to learn to use the application slow

9.0

fast

Exploration o f features by trail and error discouraging

8.8

encouraging

Exploration o f features risky

8.6

safe

Discovering new features difficult

8.6

easy

Remembering names and use of commands difficult

8.7

easy

Remembering specific rules about
entering commands

difficult

8.3

easy

Gregory E. Russell 1 7 5 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Software Usability Testing

Learning (continued)

Usability Attribute Average Rating (1 through 9)

Can tasks be performed in a straight-forward
manner?

never

8.6

always

Number of steps per task too many

8.8

just right

Steps to complete a task, follow a
logical sequence

rarely

8.4

always

Completion of sequence o f steps unclear

8.2

clear

Help messages on screen confusing

8.8

clear

Accessing help messages difficult

8.8

easy

Content of help messages confusing

8.8

clear

Amount of help inadequate

9.0

adequate

Supplemental reference materials confusing

8.3

clear

Tutorials for beginners confusing

8.5

clear

Reference manuals confusing

7.8

clear

Engineering documents confusing

8.2

clear

System Capabilities

Usability Attribute Average Rating (1 through 9)

Application speed too slow

8.8

fast enough

Project Demonstrating Excellence 176 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Software Usability Testing

System Capabilities (continued)

Usability Attribute Average Rating (1 through 9)

Response time for most operations too slow

9.0

fast enough

The rate information is displayed too slow

8.8

fast enough

How reliable is the system? unreliable

8.2

reliable

Operations are undependable

8.4

dependable

Application failures occur frequently

8.2

seldom

Application warns the user about
potential problems

never

7.7

always

Application tends to be noisy

9.0

quiet

Computer tones, beeps, clicks, etc. annoying

8.3

pleasant

Correcting your mistakes difficult

8.4

easy

Correcting typos or mistakes complex

9.0

simple

Ability to undo operations inadequate

8.8

adequate

Are the needs o f both experienced and
inexperienced users taken into consideration?

never

8.4

always

Novices can accomplish tasks knowing only a
few commands

with difficulty

8.6

easily

Experts can use features / shortcuts with difficulty

8.8

easily

Gregory E. Russell 1 7 7 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Software Usability Testing

Overall User Reactions

Please circle the numbers which most appropriately reflect your impressions about using this
computer system. Not Applicable = NA. There is room on the last page for your written
comments.

Usability A ttribute Average Rating (1 through 9)

Overall reactions to the application: terrible wonderful

8.4

frustrating

8.0

satisfying

dull

7.6

stimulating

difficult

8.8

easy

inadequate power

8.0

adequate power

rigid

8.0

flexible

Evaluators’ Comments

Dr. Alisher Abbullayeu

Mr. Greg Russell has accomplished a great job. Very good product.

Cindy Powers

I’d like to submit this product for testing in our application development

group.

Good Work!

Project Demonstrating Excellence 178 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Software Usability Testing

Jeff Dunlap

Wonderful Tool! The extensive help files were excellent. I used each

Engineering Document Template to create documents for my project at work.

Included is a list of problems I had with some of the templates. 1 loved the

Coding Standards section and how you have things separated.

Harry Wheelis

Overall, the system performs its functions in a clear, concise and predictable

manner. I found it very intuitive and consistent with many GUI applications

I use daily in my job.

I am looking forward to evaluating the system on a desk top device where I

can very screen resolution & CPU speed in order to get a better feel across .

several different test scenarios. Also need to see product with database

attached.

It is a product I could make immediate use o f in my job, even in its current

form

Dr. T Joseph Walsh

I could not access any of the forms, templates, or documents. (I could access

Word 6.0a and then open them from within Word.)

It seems like the PSP Process screen promises so much and delivers so little

I mean every time I saw “This is a planned PSP Process enhancement.” It’s

well designed. It’s just not complete.

You should be pleased to know the software runs under Windows 95.

Gregory E. Russell 1 7 9 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Software Usability Testing

Project Demonstrating Excellence 180 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

WWMMPWMM

The following texts, articles, and guides were considered the most important

material required for this program. The material was either reviewed fully or partially

during the Ph.D. program. The material was used for all aspects o f the degree program

including course work, course development, internship, program demonstrating

excellence, personal development, and some of material I read for spin-off studies that I

felt would help establish some understanding of myself and my role as a software

engineer.

Index Author & Subject Title Description

AAA95a California and Nevada Tour
Book, American Automobile
Association, 1995

AAA95b Oregon and Washington
Tour Book, American
Automobile Association,
1995

Abbott86 Abbott, R. J. An Integrated
Approach to Software
Development. New York:
John Wiley, 1986.

A general text on software engineering that is organized as
a collection of annotated outlines for technical documents
that are important to the development and maintenance of
software.

Abdel-Hamid86 Abdel-Hamid, Tarek K., and
Stuart E. Madnick. “Impact
of Schedule Estimation on
Software Project Behavior.”
IEEE Software 3,4 (July
1986), 70-75.

The thesis of this paper is that different estimates create
different projects. Schedule estimates have impact on the
progress of a project, in that they directly affect staffing,
training, and perceived project status. Changes in these
factors due to the estimates (reduction in personnel, shifting
perceptions, etc.) can backfire.

Abrahams91 Abrahams, John R., Token
Ring Networks: Design and
Implementation and
Management, NCC
Blackwell, 1991

AIIworth87 Allworth, S. T., and R. N.
Zobel. Introduction to Real-
Time Software Design, 2nd
Ed. New York: Springer-
Verlag, 1987.

One of the few books that is devoted to this particular and
rather specialized aspect of software design. The book
makes good use of the concept of a virtual machine for
design of such systems and is well provided with diagrams.
Much of the discussion is concerned with detailed design
issues. The book pulls together into a single theme material
taken from diverse areas.

Gregory E. Russell 1 8 1 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Altman94 Altman, Ross, “Traditional

Waterfall Application
Development Methodology:
Can It Be Shaped To Suit
End-User Development?,”
The Working Computing
Report, vl7, nl (January
1994), 9

Anderson85 Anderson, D. R., D. J.
Sweeney, and T. A.
Williams. An Introduction to
Management Science, 4th
Ed. St. Paul: West Publishing
Company, 1985.

An excellent text used by many management science
courses dealing with the “quantitative approaches to
decision making.”

Archer86 Archer, Rowland, The
Practical Guide to Local
Area Networks, Osborne
McGraw-Hill, 1986

Arthur88 Arthur, Lowell Jay. Software
Evolution. New York: John
Wiley and Sons, 1988.

This book is a detailed survey of techniques for software
maintenance activities. Its final chapter treats “managing
for maintenance,” and is good background reading for the
topic when it is taught in a software project management
course.

Arthur92 Arthur, Lowall Jay, Rapid
Evolutionary Development:
Requirements, Prototyping &
Software Creation, New
York: John Wiley, 1992

This text offers a practical, logical way to develop the next
generation of business application software and improve
the way a company handles information. The author
provides a step-by-step guide that helps the reader to
develop a system that works now but is flexible enough to
grow with the needs of its users.
The author uses the Plan, Do, Check, and Act processes that
were first proposed by Shewart.

Arthur93 Arthur, Lowell Jay,
Improving Software Quality:
An Insider's Guide to TQM,
New York: John Wiley, 1993

This text explains how to apply Total Quality Management
(TQM) to software development and evolution. The author
provides a good explanation of the Software Engineering
Institute’s Software Capability Maturity Model assessment
methods and how to use this model and assessment to
quickly benchmark the organization’s existing software
practices against the best in the world. The author then
explains how to establish a baseline of excellence and
implement a process improvement effort based on proven
action plans.
This text should be used as a supplement to Humphrey95.

Atkinson91 Atkinson, Lee and Mark
Atkinson, Using Borland
C++, Que Corporation,
1991

Project Demonstrating Excellence 182 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Author Unknown Application Development

Trends, v2, n8 (March 1994),
reprint

Azarmsa91 Azarmsa, Reza, Educational
Computing: Principles and
Applications, Educational
Technology Publications,
1991

Babbie92 Babbie, Earl, The Practice o f
Social Research, 6th edition,
Belmont, CA, Wadsworth
Publishing Company, 1992

This text is the most used text book for social research. Earl
Babbie has included an extensive material dealing with how
to review social research material. The text includes several
chapters dealing with statistical analysis and how that is
used in social research.
This text has the same limitations as Cozby93, in that, it is
limited in scope in providing a full understanding of
research dealing with large systems that may have several
dozens to hundred of variables

Babich86 Babich, Wayne A., Software
Configuration Management:
Coordination for Team
Productivity, New York, NY.
Addison-Wesley Publishing
Company, 1986

This text focuses on software configuration management as
a day-to-day tool for increasing programmer productivity.
The author discusses the problems, solutions and principles
of software configuration management.

Bach95a Bach, James. “Let’s Be
Practical and Make Quality
About Consequences.”
PCWeek, vl2, n34 (August
28, 1995), A12

Bach95b Bach, James, “Software
Quality on a Shoestring,”
Soft-Letter, vl 1, nl6
(January 17, 1995), 5

Barfield93 Barfield, Lon, The User
Interface: Concepts and
Design, Addison-Wesley,
1993

Gregory E. Russell 183 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Basili87a Basili, Victor R., Richard W. The Cleanroom software development approach is intended

Selby, and F. Terry Baker. to produce highly reliable software by integrating formal
“Cleanroom Software methods for specification and design, nonexecution-based
Development: An Empirical program development, and statistically based independent
Evaluation.” IEEE Trans. testing. In an empirical study, 15 three-person teams
Software Eng. SE-13,9 developed versions of the same software system (800-2300
(Sept. 1987), 1027-1037. source lines); ten teams applied Cleanroom, while five

applied a more traditional approach. This analysis
characterizes the effect of Cleanroom on the delivered
product, the software development process, and the
developers.
The major results of this study are the following:
1) Most of the developers were able to apply the
techniques of Cleanroom effectively (six of the ten
Cleanroom teams delivered at least 91 percent of the
required system functions).
2) The Cleanroom teams' products met system
requirements more completely and had a higher percentage
of successful operationally generated test cases.
3) The source code developed using Cleanroom had more
comments and less dense control-flow complexity.
4) The more successful Cleanroom developers modified
their use of the implementation language; they used more
procedure calls and IF statements, used fewer CASE and
WHILE statements, and had a lower frequency of variable
reuse (average number of occurrences per variable).
5) All ten Cleanroom teams made all of their scheduled
intermediate product deliveries, while only two of the five
non-Cleanroom teams did.
6) Although 86 percent of the Cleanroom developers
indicated that they missed the satisfaction of program
execution to some extent, this had no relation to the product
quality measures of implementation completeness and
successful operational tests.
7) Eighty-one percent of the Cleanroom developers said
that they would use the approach again.
This paper can be used to illustrate quality-based life
cycles.

Project Demonstrating Excellence 1 8 4 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Basili87b Basili, V. R., and H. D.

Rombach. “Tailoring the
Software Process to Project
Goals and Environments.”
Proc. 9th. Intern. Conf:
Software Engineering. IEEE
Computer Society, 1987,
345-357.

This paper presents a methodology for improving the
software process by tailoring it to the specific project goals
and environment This improvement process is aimed at the
global software process model as well as methods and tools
supporting that model. The basic idea is to use defect
profiles to help characterize the environment and evaluate
the project goals and the effectiveness of methods and tools
in a quantitative way. The improvement process is
implemented iteratively by setting project improvement
goals, characterizing those goals and the environment, in
part, via defect profiles in a quantitative way, choosing
methods and tools fitting those characteristics, evaluating
the actual behavior of the chosen set of methods and tools,
and refining the project goals based on the evaluation
results. All these activities require analysis of large amounts
of data and, therefore, support by an automated tool. Such a
tool — TAME (Tailoring A Measurement Environment) —
is currently being developed.

Beckley94 Beckley, Glen B„ “TQM:
Find the Red Flags Hiding in
Existing Systems,”
Datamation, v40, nl7
(September 1, 1994), 63-64

Beizer84 Beizer, Boris, Software
System Testing and Quality
Assurance, New York, NY:
Van Nostrand Reinhold Co,
1984

This is a comprehensive guide to system testing and quality
assurance shows learners how to create and maintain
reliable, robust, high-quality software. The author covers
the gamut from unit testing to system testing, providing
effective techniques for security testing, recovery testing,
configuration testing, background testing, and performance
testing. Integration testing strategies are also presented.

Beizer90 Beizer, Boris, Software
Testing Techniques, 2nd
edition, New York, NY: Van
Nostrand Reinhold Co, 1990

This text explicitly addresses the idea that design for
testability is as important as testing itself by showing the
learner how to do it.

Bell85 Bell, Paula, Hightech
Writing: How to Write for
the Electronics Industry,
New York, NY: Wiley-
Interscience, 1985

This text is for technical writers, engineers, programmers,
and anyone who writes about electronic and software
products. The text offers good writing basics: templates that
illustrate standard manual formats; step-by-step procedures
for extracting, structuring, and presenting technical
information; styles to match a variety of products.

BelI89 Bell, Paula and Charlotte
Evans, Master
Documentation, New York,
NY: John Wiley & Sons,
Inc., 1989

This text provides tips, techniques, and sample documents
that the reader may need to design, write, and maintain
effective documentation throughout the entire project life
cycle.

Gregory E. Russell 185 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Bendifallah87 Bendifallah, S., and W.

Scacchi. “Understanding
Software Maintenance
Work.” IEEE Trans.
Software Eng. SE-13, 3
(March 1987),3II-323.

Software maintenance can be successfully accomplished if
the computing arrangements of the people doing the
maintenance are compatible with their established patterns
of work in the setting. To foster and achieve such
compatibility requires an understanding of the reasons and
the circumstances in which participants carry out
maintenance activities. In particular, it requires an
understanding of how software users and maintainers act
toward the changing circumstances and unexpected events
in their work situation that give rise to software system
alterations. To contribute to such an understanding, we
describe a comparative analysis of the work involved in
maintaining and evolving text-processing systems in two
academic computer science organizations. This analysis
shows that how and why software systems are maintained
depends on occupational and workplace contingencies, and
vice versa.

Benson95 Benson, Scott E., “Software
Processes: Integrating
Processes for Software
Excellence,” Software
Development, v3, n8
(August 1995), 51-54

Berger85 Berger, J. O. Statistical
Decision Theory and
Bayesian Analysis, 2nd Ed.
New York: SpringerVerlag,
1985.

Covers the foundations and concepts of statistical decision
theory, including situations where data are incomplete. This
book approaches statistics from the business perspective
where not all of the data are available. It introduces the
probability of accuracy of the data into the statistical
calculations, statistics based on probable accuracy of the
data (Bayesian), is not appreciated by the mathematical
approach to statistics.

Berry92 Berry, Daniel M., Academic
Legitimacy o f the Software
Descipline, Pittsburgh, PA:
Software Engineering
Institute, Camegie-Mellon
University, 1994

BersoffSO Bersoff, E. H„ V. D.
Henderson, and S. G. Siegel.
Software Configuration
Management. Englewood
Cliffs, NJ, Prentice-Hall,
1980.

This book contains the most complete description of
software configuration management available. It provides a
fairly complete rationale for what to do and why to do it.
The authors have their own conceptual breakdown of the
subject that does not map one-for-one with the organization
of this module. The book is also weak in clearly explaining
how to do the tasks of configuration management.

Project Demonstrating Excellence 1 8 6 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Bersoff84 Bersoff, E. H. “Elements of

Software Configuration
Management.” IEEE Trans.
Software Eng. 10, l (Jan.
1984), 79-87.

Software configuration management (SCM) is one of the
disciplines of the 1980s which grew in response to the
many failures of the software industry throughout the
1970s. Over the last ten years, computers have been applied
to the solutions of so many complex problems that our
ability to manage these applications has all too frequently
failed. This has resulted in the development of a series of
“new” disciplines intended to help control the software
process.
This paper focused on the discipline of SCM by first
placing it in its proper context with respect to the rest of the
software development process, as well as the goals of that
process. It examined the constituent components of SCM,
dwelling at some length on one of those components,
configuration control.

Berzins91 Berzins, Valdis and Luqi,
Software Engineering with
Abstractions, New York,
NY. Addison-Wesley
Publishing Company, 1991

The authors present a systematic approach that leads the
learner through the entire software development process,
using formal specification language to develop large, real
time, and distributed systems in Ada
This is an excellent advance text for Ada programmers and
software engineers.

Berztiss88 Bertziss, Alfs T., and Mark
A. Ardis. Formal Verification
o f Programs. Curriculum
Module SEICM-20-1.0,
Software Engineering
Institute, Carnegie Mellon
University, Pittsburgh, Pa.,
Dec. 1988.

This module introduces formal verification of programs. It
deals primarily with proofs of sequential programs, but also
with consistency proofs for data types and deduction of
particular behaviors of programs from their specifications.
Two approaches are considered: verification after
implementation that a program is consistent with its
specification, and parallel development of a program and its
specification. An assessment of formal verification is
provided.

Bifferstaff89a Biggerstaff, Ted J., and Alan
J. Perlis, Software
Reusability: Volume I:
Concepts and Models, New
York, NY. Addison-Wesley
Publishing Company, 1989

This volume provides a framework for understanding
software reusability. The editors present an overview and
assessment of reusability, then they present a variety of
composition-based and generation-based systems that
explain the principles underlying this new methodology and
illustrate its critical place in large-scale programming
projects.

Bifferstaff89b Biggerstaff, Ted J., and Alan
J. Perlis, Software
Reusability: Volume 11:
Applications and
Experiences, New York, NY.
Addison-Wesley Publishing
Company, 1989

The final volume in this series, provides actual case studies
on reusability, as well as both quantitative and cognitive
results.

Gregory E. Russell 187 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Birrell85 Birrell, N. D., and M. A.

Ou!d. A Practical Handbook
for Software Development.
New York: Cambridge
University Press, 1985.

Provides a good overview of the software engineering view
of system development, supported by an overview of a
wide range of the techniques that are available to support
each phase of development. The latter half of the book
covers a wide range of design issues, together with
examples. The book makes particularly good use of
diagrams to help make its points.

Bjorner82 Bjomer, D., and C. B. Jones.
Formal Specifications and
Software Development.
Englewood Cliffs, N. J.:
Prentice-Hall, 1982.

The primary concern of this text is the development of
formal specifications, with emphasis being placed upon the
need to be able to relate design to specification. It contains
chapters by a number of authors describing aspects and
applications of VDM (Vienna Development Method),
presented at an advanced level and requiring some
background in discrete mathematics.

Black91 Black, Uyless D., OSI: A
Model for Computer
Communications Standards,
Englewood Cliffs, NJ:
Prentice-Hall, 1991

Blank83 Blank, J. and M. J. Krijger,
eds. Software Engineering:
Methods and Techniques.
New York: Wiley-
Interscience 1983.

A report produced by the Information Structures Subgroup
of the Dutch Database Club, which aims to evaluate and
compare a number of different design methods. Many of
the methods will be unfamiliar to most readers, although
the list does include more widely-known methods such as
SADT, Wamier-Orr, and JSD. A summary of the features
of each method is included.
The use of an “Evaluation Matrix” as a means of presenting
information about the features and application areas of a
method is an interesting feature.

Blattner92 Blattner, Meera M. and
Roger B. Dannenberg (eds.),
Multimedia Interface Design,
Addison-Wesley, 1992

Block83 Block, Robert, The Politics
o f Projects, Englewood
Cliffs, NJ: Yourdon Press,
1983

The author explores the political component of project and
system failures. He states in the Preface, “... 1 realized that
political interaction was not an optional activity, but rather
a requirement of managers in any organization,... that
beneath the parries and thrusts of political fencing there
was an underlying process, one that could be presented and
taught to beginning and soon-to-be politicians.” His book
teaches this process, but more than teach, it makes the
process come alive through clearly stated guidelines,
practical examples and exercises, and vividly real-world
case study.

Project Demonstrating Excellence 188 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Boehm81 Boehm, B. W. Software

Engineering Economics.
Englewood Cliffs, N. J.:
Prentice-Hail, 1981.

Presents an extensive motivation and treatment of software
development and evolution in terms of costs, quality, and
productivity issues. Among the results, Boehm indicates
that personnei/team capability and other attributes of a
software production setting usually have far greater affect
on the quality and cost of software products than do new
software engineering tools and techniques. It also presents
an in-depth discussion of the development and details of the
software cost estimation model, COCOMO that draws upon
the extensive studies and analyses that Boehm and
associates at TRW have conducted over the years.

Boehm84a Boehm, Barry W., Terence
E. Gray, and Thomas
Seewaldt. “Prototyping
Versus Specifying: A
Multiproject Experiment.”
IEEE Trans. Software Eng.
SE-10,3 (May 1984), 290-
302.

In this experiment seven software teams developed versions
of the same small-size (2000-4000 source instruction)
application software product. Four teams used the
Specifying approach. Three teams used the Prototyping
approach.
The main results of the experiment were the following.
1) Prototyping yielded products with roughly equivalent
performance, but with about 40 percent less code and 45
percent less effort.
2) The prototyped products rated somewhat lower on
functionality and robustness but higher on ease of use and
ease of learning.
3) Specifying produced more coherent designs and
software that was easier to integrate.
The paper presents the experimental data supporting these
and a number of additional conclusions.
This paper provides an example of an alternative
development cycle.

Boehm84b Boehm, Barry W. “Software
Engineering Economics.”
IEEE Trans. Software Eng.
SE-10,1 (Jan. 1984), 4-21.

This paper summarizes the current state of the art and
recent trends in software engineering economics. It
provides an overview of economic analysis techniques and
their applicability to software engineering and
management. It surveys the field of software cost
estimation, including the major estimation techniques
available, the state of the art in algorithmic cost models,
and the outstanding research issues in software cost
estimation.
This is a short summary of the thesis of [Boehm81].

Boehm87 Boehm, Barry W.
“Improving Software
Productivity.” Computer 20,
9 (Sept. 1987), 43-57.

This article is an excellent short summary of the realistic
factors involved in increasing the productivity of software
developers. Boehm's explicit belief is that the quality of
management is the most important factor in the success of a
project. An extensive selected bibliography by productivity
factor (“getting the best from people,” “eliminating
rework,” etc.) is included.

Gregory E. Russell 189 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Boehm88 Boehm, Barry W. “A Spiral

Model of Software
Development and
Enhancement.” Computer
21, 5 (May 1988), 61-72.

Presents a new model for modeling the software process
that explicitly attempts to address how to manage the risks
associated with the development of different kinds of
software systems. The presentation of the model focuses
on addressing risk as a central component in determining
how to structure the software development process is
unique and worth careful examination.
An excellent description of a risk-reduction life cycle that is
the foundation life-cycle for many process-engineering
tools.

Boger85 Boger, D. C., and N. R.
Lyons. “The Organization of
the Software Quality
Assurance Process.” Data
Base (USA) 16,2 (Winter
1985), 11-15.

This paper discusses and analyzes approaches to the
problem of software quality assurance. The approaches
offered in the literature usually focus on designing in
quality. This can be a productive approach, but there are
also benefits to be gained by establishing an independent
quality assurance (QA) group to review all aspects of the
software development process. This paper discusses the
organization of such a group using the function of an
operations auditing group as a model.

Booch87 Booch, G. R. Software
Engineering with Ada, 2nd
Ed. Menlo Park, Calif.:
Benjamin/Cummings, 1987.

Describes the Ada language and its use, with particular
reference to the features of Ada that support software
engineering principles. Contains five examples on object-
oriented design, presented in a highly readable form.

Booch91 Booch, Grady, Object-
Oriented Design with
Applications, Redwood City,
CA, The
Benjamin/Cummings
Publishing Company, Inc.,
1991

This text provides a practical guide for constructing
complex object-oriented systems and provides a
comprehensive description of object-oriented design
methods (Booch method and notation)
The methods and notations described are excellent for
systems architecture but is extremely limited for class
methods design. Booch’s method has the same limitations
as Rumbaugh91.

Brackett88 Brackett, John W. Software
Requirements. Curriculum
Module SEI-CM-l 9-1.0,
Software Engineering
Institute, Carnegie Mellon
University, Pittsburgh, Pa.,
Dec. 3988.

Capsule Description: This curriculum module is concerned
with the definition of software requirements the software
engineering process of determining what is to be produced
and the products generated in that definition. The process
involves:
• requirements identification,
• requirements analysis,
• requirements representation,
• requirements communication, and
• development of acceptance criteria and procedures.
The outcome of requirements definition is a precursor of
software design.

Project Demonstrating Excellence 190 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Branstad84 Branstad, Martha, and

Patricia B. Powell. “Software
Engineering Project
Standards.” IEEE Trans.
Software Eng. SE-IO, 1 (Jan.
1984), 73-78.

Software Engineering Project Standards (SEPS) and their
importance are presented in this paper by looking at
standards in generals then progressively narrowing the view
to software standards, to software engineering standards,
and finally to SEPS. After defining SEPS, issues associated
with the selection, support, and use of SEPS are examined
and trends are discussed. A brief overview of existing
software engineering standards is presented as the
Appendix.
This paper is useful as an overview if no specific standard
is used in class.

Brockschmidt94 Brockschmidt, Kraig, Inside
OLE 2, Redmond, WA.,
Microsoft Press, 1994

This text provides an extremely detailed description of OLE
version 2.0 and how to implement OLE features in
Windows applications.

Brooks75 Brooks, Frederick. The
Mythical Man-Month:
Essays on Software
Engineering. Reading,
Mass.: Addison-Wesley,
1975.

This book can be regarded as being a classical presentation
of the problems that may be encountered in the
development and management of a large software system.
As such, it should be regarded as essential preliminary
reading for anyone who has little or no prior experience of
programming-in the-large, or who has not been involved in
project management. The book contains many important
lessons for the designer, presented in a particularly readable
format.

Brooks87 Brooks, Frederick P., Jr. “No
Silver Bullet: Essence and
Accidents of Software
Engineering.” Computer 24,
4 (April 1987), 10-19.

In this article Brooks discusses why software isn't
improving by leaps and bounds like hardware, why it never
will, and what it takes to get the most out of software
development.

Browing84 Browning, Christine, Guide
to Effective Software
Technical Writing,
Englewood Cliffs, NJ:
Prentice-Hall, Inc, 1984

The author describes the important technical manuals and
their functions and provides criteria for writing them. She
also describes the approaches for writing a reference
manual and the user manual in a step-by-step method.

Brown87 Brown, Brad. Assurance of
Software Quality.
Curriculum Module SEI-CM-
7-1.1, Software Engineering
Institute, Carnegie Mellon
University, Pittsburgh, Pa.,
July 1987.

This module presents the underlying philosophy and
associated principles and practices related to the assurance
of software quality. It includes a description of the
assurance activities associated with the phases of the
software development life-cycle (e.g., requirements, design,
test, etc.).

Budd94 Budd, Timothy A., Classic
Data Structures in C++:
Addison-Wesley Publishing
Company, 1994

Gregory E. Russell 1 9 1 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Budde84 Budde, R., K. Kuhienkamp,

L. Mathiassen, and H.
Zullighoven, eds.
Approaches to Prototyping.
New York: Springer-Verlag,
1984.

A collection of papers from a workshop held to study the
use of different forms of prototyping in systems design and
development. Provides the most extensive survey of
approaches to software development and evolution through
the use of prototyping tools and techniques.

Budgen89 Budgen, David, Introduction
to Software Design.
Curriculum Module SEI-CM-
2-2.1, Software Engineering
Institute, Carnegie Mellon
University, Pittsburgh, Pa.,
Jan. 1989.

This curriculum module provides an introduction to the
principles and concepts relevant to the design of large
programs and systems. It examines the role and context of
the design activity as a form of problem-solving process,
describes how this is supported by current design methods,
and considers the strategies, strengths, limitations, and main
domains of application of these methods.

Buhr84 Buhr, R. J. „ Englewood
Cliffs, N. J.: Prentice-Hall,
1984.

Presents and illustrates a top-down, design-oriented
introduction to Ada, using a specially developed graphical
design notation (the structure graph). Presentation is
oriented toward concurrent programs.

Callaway95 Callaway, Erin, “Model
Improvement,” PC Week,
vl2, n24 (June 19, 1995), E7

Calvert93 Calvert, Charlie, Teach
Yourself Windows
Programming in 21 Days,
Indianapolis, Indiana, Sams
Publishing, 1993

An excellent structured text to learn Windows
programming using the C language within a very short
time.
This text provides information for learning the basics. It
does not make the learner into an expert over night, that
requires a lot of practice.

Cameron83 Cameron, J. R. JSP & JSD:
The Jackson Approach to
Software Development,
Washington, D. C.: IEEE
Computer Society Press,
1983.

A collection of articles and papers describing JSP and JSD
and illustrating these methods using a range of examples of
reasonable size and complexity.

Card90 Card, David N. and Robert
L. Glass, Measuring
Software Design Quality,
Englewood Cliffs, NJ,
Prentice-Hall, 1990

David Card presents a practical guide to software metrics.
The author defines a complete metric set centered around
design quality that can be extended throughout the
development life cycle.

Carlini95 Carlini, James, “TQM and
Reengineering Teams Need
Networking Guru to
Succeed,” Network World,
v l2 ,n l5 (April 10,1995), 64

Chabrow9S Chabrow, Eric R., “The
Training Payoff,”
Information Week, 535 (July
10, 1995), 36-46

Project Demonstrating Excellence 192 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Champine91 Champine, George, MIT

Project Athena: A Model for
Distributed Campus
Computing, Digital Press,
1991

Charette89 Charette, Robert N.,
Software Engineering: Risk
Analysis and Management,
New York, NY: Intertext
Publications: McGraw-Hill,
1989

Charette90 Charette, Robert N.,
Applications Strategies for
Risk Analysis, New York,
NY: Intertext Publications:
McGraw-Hill, 1990

Christiansen92a Christiansen, Donald,
“Spectral Lines”, IEEE
Spectrum, Volume 29,
Number 2 (February 1992),
19

Christiansen92b Christiansen, Donald,
“Spectral Lines”, IEEE
Spectrum, Volume 29,
Number 6 (June 1992), 19

Christiansen92c Christiansen, Donald,
“Spectral Lines”, IEEE
Spectrum, Volume 29,
Number 7 (July 1992), 25

Coad91a Coad, Peter and Edward
Yourdon, Object-Oriented
Analysis, 2nd Edition,
Englewood Cliffs, NJ,
Yourdon Press, 1991

The authors present an excellent guide to object-oriented
analysis that provides detailed description of terminology
and notation, how to find classes and objects, identifying
structures, defining attributes, defining services, and
translating the object-oriented analysis to object-oriented
design notation.

Coad91b Coad, Peter and Edward
Yourdon, Object-Oriented
Design, Englewood Cliffs.
NJ,Yourdon Press. 1991

This second volume in a series of guides to object-oriented
development focuses on improving design, developing the
multilayer, multicomponent model, design the problem
domain component, designing the human/computer
interaction component, designing the task management
component, and finally designing the data management
component.

Coffee94 Coffee, Peter, “Automating
Tasks Is the Next
Productivity Gain,” PC
Week, vl 1, n45 (November
14,1994), 52

Gregory E. Russell 1 9 3 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Collofello87 Coilofello, James S., and

Jeffrey J. Buck. “Software
Quality Assurance for
Maintenance.” IEEE
Software 4,9 (Sept. 1987),
46-51.

Coilofello and Buck provide some insight on managing a
project for prevention of software problems, as well as
correction of problems through software quality assurance.

Comaford94 Comaford, Christine,
“Version Control Is Not
Optional, It’s Requried,” PC
Week, vl 1, n44 (November
7, 1994), 24

Comer93a Comer, Douglas E.,
Internetworking with
TCP/IP, Volume I:
Principles, Protocols, and
Architecture, 2nd Edition,
Englwood Cliffs, NJ:
Prentice-Hall, 1993

Comer93b Comer, Douglas E.,
Internetworking with
TCP/IP, Volume II:
Principles, Protocols, and
Architecture, 2nd Edition,
Englwood Cliffs, NJ:
Prentice-Hall, 1993

Comer94 Comer, Douglas E.,
Internetworking with
TCP/IP, Volume III:
Principles, Protocols, and
Architecture, 2nd Edition,
Englwood Cliffs, NJ:
Prentice-Hall, 1994

ConnelI95 Connell, John, and Linda
Shafer, Object-Oriented
Rapid Prototyping,
Englewood Cliffs, NJ,
Yourdon Press, 1995

This text describes the techniques, in a step-by-step tutorial
format, for developing, iterating, refining, and evolving a
prototype into a deliverable software application.

Connor85 Connor, D. Information
System Specification and
Design Road Map.
Englewood Cliffs, N. J.:
Prentice-Hall, 1985. ISBN 0-
13-464868-4.

Essentially aimed at data processing style systems that are
concerned with record management. Gives an overview of
a number of methods based on a document library problem.

Conte86 Conte, S. D., H. E.
Dunsmore, and V. Ye Shen,
Software Engineering
Metrics and Models. Menlo
Park, Calif.:
Benjamin/Cummings, 1986.

This is the single most complete treatment of available
metric models usable in software engineering. Every
project manager and instructor will need this book in his or
her library.

Project Demonstrating Excellence 1 9 4 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Cooksey95 Cooksey, Kathryn, “C/S

Threats to QA,” The
Computer Conference
Analysis Newsletter, n365
(June 6, 1995), 7

Covey89 Covey, Stephen R., The 7
Habits o f Highly Effective
People, New York, NY.
Simon & Schuster, 1989

The author presents a holistic, integrated, principle-centered
approach for solving personal and professional problems.
The author describes a step-by-step pathway for living with
fairness, integrity, honesty, and human dignity, principles
that will help the learner to adapt to change, and the
wisdom and power to take advantage of the opportunities
that change creates.
This is a superb text on personal worth as well as a treatise
on organizational change. The author interjects many
examples of organizations that incorporate the principles
presented in this text.

Covey94a Covey, Stephen R., A. Roger
Merrill, and Rebecca R.
Merrill, Principle-Centered
Leadership, New York, NY:
Simon & Schuster, 1994

This book, along with Covey89, Covey93 and
Humphrey95, was one of the most important and rewarding
books that I read during this journey through my Ph.D.
program. Not only is this book an excellent guide for self
renewal it also helps to define what and how organizations
can do to become learning organizations.

Covey94b Covey, Stephen R., A. Roger
Merrill, and Rebecca R.
Merrill, First Things First,
New York, NY: Simon &
Schuster, 1994

This text offers a principle-centered approach that will
transform the quality of everything the learner does by
showing how it involves the need to live, to love, to learn,
and to leave a legacy. The authors show the learners how to
empower themselves to define what is truly important; to
accomplish worthwhile goals; and to lead rich, rewarding,
and balanced lives.
This book, along with Covey89 and Humphrey95, was one
of the most important and rewarding books that I read
during this journey through my Ph.D. program. Not only is
this book an excellent guide for self renewal it also helps to
define what and how organizations can do to become
learning organizations.

Cozby93 Cozby, Paul C., Methods in
Behavioral Research, 5th
edition, Mountain View, CA,
Mayfield Publishing
Company, 1993

This text is an introduction to behavioral research methods.
It primarily looks at traditional research methods and not at
research research methods used for organizational system,
for example, open systems evaluation method.
This text has the same limitations as Babbie92, in that, it is
limited in scope in providing a full understanding of
research dealing with large systems that may have several
dozens to hundred of variables.

Cross84 Cross, N., ed. Developments
in Design Methodology, New
York: John Wiley, 1984.

A comprehensive summary of work in the field of design
theory over the past twenty-five years. Includes important
papers by J. Christopher Jones, Christopher Alexander,
Herbert Simon, and Horst Rittel.

Gregory E. Russell 1 9 5 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
CupelIo88 Cupello, James M., and

David J. Mishelevich.
“Managing Prototype
Knowledge/Expert System
Projects.” Comm. ACM 31,
5 (May 1988), 534-541.

Fundamental issues of technology transfer, training,
problem selection, staffing, corporate politics, and more,
are explored

Curtis87a Curtis, Gail M., Beautiful
America's Oregon,
Wilsonville, OR: Beautiful
America Publising Company,
1987

Curtis87b Curtis, B., H. Krasner, V.
Shen, and N. Iscoe. “On
Building Software Process
Models Under the
Lamppost.” Proc. 9th. Intern.
Conf: Software Engineering.
IEEE Computer Society,
April 1987, 96-103 .

Most software process models are based on the
management tracking and control of a project. The popular
alternatives to these models such as rapid prototyping and
program transformation are built around specific
technologies, many of which are still in their adolescence.
Neither of these approaches describe the actual processes
that occur during the development of a software system.
That is, these models focus on the series of artifacts that
exist at the end of phases of the process, rather than on the
actual processes that are conducted to create the artifacts.
We conducted a field study of large system development
projects to gather empirical information about the
communication and technical decision-making process that
underlie the design of such systems. The findings of this
study are reviewed for their implications on modeling the
process of designing large software systems. The thesis of
the paper is that while there are many foci for process
models, the most valuable are those which capture the
processes that control the most variance in software
productivity and quality.

Curtis88 Curtis, Bill, Herb Krasner,
and Neil Iscoe. “A Field
Study of the Software Design
Process for Large Systems.”
Comm. ACM 31 a 11 (Nov.
1 988), 1268-1287

A rare study of how software development really takes
place. The authors interviewed personnel from 17 large
software projects. Using a layered behavioral models they
analyze the impact on quality and productivity of shifting
requirements, inadequate domain knowledge, and
communication problems.

Cyert87 Cyert, R. M. Bayesian
Analysis and Uncertainty in
Economic Theory. Totowa,
N.J.: Rowman & Littlefield,
1987.

Looks at statistical methods used in economics where data
are incomplete

Dart87 Dart, Susan A., Robert J.
Ellison, Peter H. Feiler, and
Nico Habermann. “Software
Development
Environments.” Computer20,
11 (Nov. 1987), 18-28.

This taxonomy of software development environments
serves as useful reading for discussions of resource
acquisition, allocation, and training.

Project Demonstrating Excellence 1 9 6 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Davidson94 Davidson, Cliff I. and Susan

A. Ambrose, The New
Professor's Handbook,
Bolton, MA, Anker
Publishing Company, Inc.,
1994

This book is an ideal resource for everyone making the
transition to new faculty member in engineering and
science. It provides excellent information on student
learning, course planning, conducting discussions,
lecturing, and developing exams and assignment.

Davis83 Davis, W. S., Systems
Analysis and Design,
Reading, Mass.: Addison-
Wesley, 1983.

A presentation on analysis and design based around the use
of three case studies. Each of the case studies is taken
through the steps of problem definition, feasibility study,
analysis, system design, and detailed design. The main
emphasis of the book is on analysis rather than design, as
such. The book is oriented toward business applications.
The book primarily makes use of the SSA/SD approach to
design.

Deitel94 Deitel, H. M. and P. J.
Deitel, C++ How to
Program, Englewood Cliffs,
NJ: Prentice-Hall, Inc., 1994

DeMarco79 DeMarco, T., Structured
Analysis and System
Specification. Englewood
Cliffs, N. J.: Yourdon Press,
1979.

A readable book on structured analysis and system
specification that covers data flow diagrams, data
dictionaries, and process specification.

DeMarco82 DeMarco, Tom. Controlling
Software Projects. New
York: Yourdon Press, 1982.

This book concentrates heavily on metrics and the
examination of quality factors as the basis for management
of software projects. Essentially, DeMarco makes the case
that you cannot control what you cannot measure. Useful
for finding ways to integrate metrics into an organization. It
also provides a realistic perspective on the psychology of
software project management

DeMarco87 DeMarco, Tom and Timothy
Lister. Peopleware:
Productive Projects and
Teams. New York: Dorset
House, 1987.

A collection of essays on managing projects and the people
who carry them out by a pair of authors with substantial
project management and consulting experience. The essays
challenge conventional management wisdom and
emphasize how creating the right work environment can
increase productivity.

DeMilIo87 DeMillo, Richard A., W.
Michael McCracken, R. J.
Martin, and John F.
Passafiume, Software Testing
and Evaluation, The
Benjamin/Cummings
Publishing Company, Inc.,
1987

Provides a complete survey of state-of-the-art software
testing (for 1987), and is an essential reference to existing
government standards and regulations on software testing.

Gregory E. Russell 1 9 7 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description

Deming86 Deming, W. Edwards. Out o f
the Crisis. Cambridge,
Mass.: MIT Center for
Advanced Engineering
Study, 1986.

Deming advocates the transformation of American
management to focus on increasing quality and productivity
within organizations. He offers 14 guiding principles for
achieving this transformation, and he identifies the “deadly
diseases” and obstacles that currently are barriers to doing
so. Deming's principles provided the framework for the
development of postwar Japanese industry, and he is widely
credited with guiding its tremendous success.

Desmond95 Desmond, John, “Investment
in Methods, Mentoring Gives
Sprint Competitive Edge,”
Application Development
Trends, v2, n8 (August
1995), 51-56

Devargas93 Devargas, Mario, Local Area
Networks, 2nd Edition, NCC
Blackwell, 1993

Diagle91 Diagle, John N., Queuing
Theory for
Telecommunications,
Addison-Wesley, 1991

D0D88 DoD. Military Standard for
Defense System Software
Development. DOD-STD-
2167A, U. S. Department of
Defense, Washington, D.C.,
29 February 1988.

Due to its completeness and maturity as the successor to
military standards of the preceding two decades, this is one
of the best available examples to use when discussing
standards.

Downs85 Downs, T. A Review o f Some
of the Reliability Issues in
Software Engineering. J.
Electrical and Electronic
Eng. 5, 1 (March 1985), 36-
48.

This paper commences with a detailed discussion of the
problems and difficulties associated with software testing.
It is shown that large software systems are so complex that
software companies are obliged to terminate the testing
process and release such systems with every expectation
that the software still contains many errors. The possibility
of using statistical models as an aid to deciding on the
optimum time to release software is discussed and several
such models are described. The idea of “disciplined”
programming as a means of reducing software error content
is also described, and ancillary topics such as formal
specifications and program proofs are discussed. Other
concepts, such as fault-tolerant software and software
complexity measures, are also briefly described. Finally,
the implications of the fact that hardware is cheap and
reliable and software is expensive and unreliable are
discussed. It is argued that many designs currently in use
defy engineering common sense.

Project Demonstrating Excellence 1 9 8 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Downs88 Downs E., P. Clare, and I.

Coe. SSADM: Structured
Systems Analysis and Design
Method. New York:
Prentice-Hall. 1988.

SSADM is a highly prescriptive design method, with a fully
defined structure and terminology. This book begins by
describing the structure of the method, and then describes
the activities that should be associated with each of the
phases, stages, steps, and tasks involved. Written in a clear
and readable style, this book makes good use of diagrams
throughout.

Dreger89 Dreger, Brian J., Function
Point Analysis, Englewood
Cliffs, N. J.: Prentice-Hall,
1989

This text is a tutorial on Function Points. It provides
numerous examples of various ways to count and analyze
Function Points.

Drexler94 Drexler, Allan, David Sibbet,
and Russell Forrester, “The
Team Proformance Model.”
Team Building Blueprints for
Productivity and Satisfaction,
NTL Institute and University
Associates, publication date
unknown

An comprehensive article on the theories of team building
and the interaction between team members. The author
discusses the necessary steps needed to ensure a successful
team.
An excellent paper to formulate organizational and project
teams.

Edgemon95 Edgemon, Jim, “Right Stuff:
How' to Recognize It When
Selecting a Project
Manager,” Application
Development Trends, v2, n5
(May 1995), 37-42

Ellis86 Ellis Robert L., Designing
Data Networks, Englewood
Cliffs, NY: Prentice-Hall,
1986

Ellis90 Ellis, Margaret A. and Bjame
Stroustrup, The Annotated
C++ Reference Manual,
Addison-Wesley Publishing
Company, 1990

Erlbaum90 Erlbaum, L., Cognition,
Education, and Multimedia:
Exploring Ideas in High
Technology, 1990

Evans83 Evans, M. W., P. H. Piazza,
and J. B. Dolkas. Principles
of Productive Software
Management. New York:
John Wiley, 1983.

This book describes a methodology for software
management and the associated control techniques for the
entire development process, as practiced by the authors at
Ford Aerospace and Communications Corporation and
several other companies.

Gregory E. Russell 1 9 9 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Fagan86 Fagan, M. E. “Advances in

Software Inspections.” IEEE
Trans. Software Eng. SE-12,
7(1986).

This paper presents new studies and experiences that
enhance the use of the inspection process and improve its
contribution to development of defect-free software on time
and at lower costs. Examples of benefits are cited followed
by descriptions of the process and some methods of
obtaining the enhanced results.
Software Inspection is a method of static testing to verify
that software meets its requirements. It engages the
developers and others in a formal process of investigation
that usually detects more defects in the product—and at a
lower cost—than does machine testing. Users of the method
report very significant improvements in quality that are
accompanied by lower development costs and greatly
reduced maintenance efforts. Excellent results have been
obtained by small and large organizations in all aspects of
new development as well as. in maintenance. There is some
evidence that developers who participate in the inspection
of their own product actually create fewer defects in future
work. Because inspections formalize the development
process, productivity and quality enhancing tools can be
adopted more easily and rapidly.

Fairley85 Fairley, R. E. Software
Engineering Concepts. New
York: McGraw-Hill, 1985.

Describes the basic concepts and major issues of software
engineering, including current tools and techniques.
Contains a chapter on design that covers fundamental
design concepts, including assessment criteria, design
notations, and design techniques.

Fairley88 Fairley, Richard E. “A Guide
to Preparing Software Project
Management Plans.” In
Tutorial: Software
Engineering Project
Management, Richard H.
Thayer, ed. Washington,
D.C.: IEEE Computer
Society Press, 1988,257-
264.

This is written in the spirit of the various IEEE standards
for plans (quality assurance, configuration management,
etc.). One of the best parts of this guide is the conceptual
introduction to the software development process and the
relation of the project plan to it.

Feller68 Feller, W. An Introduction to
Probability Theory and Its
Applications, 3rd Ed. New
York: John Wiley, 1968.

This book is used to teach probability and statistics using a
mathematical approach.

Ferrari78 Ferrari, D. Computer Systems
Performance Evaluation.
Englewood Cliffs, N.J.:
Prentice-Hall, 1978.

This book looks at performance evaluation using
measurement, simulation, and analytic techniques. It then
applies these to solve problems characteristic of
methodology selection, design alternatives, and product
improvement.

Fisher91 Fisher, Alan S., CASE Using
Software Development Tools,
2nd Edition, John Wiley &
Sons, Inc, 1991

This text provides information on every key aspect of
automated software engineering.

Project Demonstrating Excellence 200 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description

Floyd91 Floyd, Steve, The IBM
Multimedia Handbook,
Brady, 1991

Ford94 Ford, Gary, A Progress
Report on Undergraduate
Software Engineering
Education, Pittsburgh, PA:
Software Engineering
Institute, Camegie-Mellon
University, 1994

Fox82 Fox, J. M. Software and Its
Development. Englewood
Cliffs, N. J.: Prentice-Hall,
1982.

Discusses the development of large scale software.

Frank94 Frank, Robert, “Enjoying
Best of Both Worlds,”
Software Magazine, vl4, n6
(June 1994), 96-97

Franz94 Franz, Louis A. and Jonathan
C. Shih, “Estimating the
Value of Inspections for
Early Testing for Software
Projects,” Hewlett-Packard
Journal, v45, n6 (December
1994), 60-67

Freedman90 Freedman, Daniel P. and
Gerald M. Weinberg,
Handbook o f Walkthroughs,
Inspections, and Technical
Reviews, New York, NY,
Dorset House Publishing,
1990

This handbook explains exactly how to implement reviews
for all sorts of product and software development. The
handbook spells out procedures to conduct walkthroughs
(or peer group reviews), inspections, and technical reviews,
with extensive checklists for each type of material
reviewed.
A “must” text for the enlighten software engineer.

Freeman87 Freeman, Peter. Software
Perspectives: The System is
the Message. Reading,
Mass.: Addison-Wesley,
1987.

This book is too general to be a single text for software
project management courses. However, it does emphasize
the importance of environments and preparing for transition
of a product.

Friedman94 Friedman, Frank L. and
Elliot B. Koffman, Problem
Solving, Abstraction, and
Design Using C++;
Addison-Wesley Publishing
Company, 1994

Gregory E. Russell 201 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Gane79 Gane, C., and T. Sarson.

Structured Systems Analysis:
Tools and Techniques.
Englewood Cliffs, N. J.:
Prentice-Hall, 1979.

One of the more widely used books on structured systems
analysis. The book discusses some of the problems in
analysis, reviews graphical tools, and shows how the
graphical tools fit together to make a logical model. Each
tool is treated in detail, including the data flow diagram. A
structured system development method that takes advantage
of the tools is presented. The importance of changeability
and how it may be treated is also covered.

Gause89 Gause, Donald C. and Gerald
M. Weinberg, Exploring
Requirements: Quality
Before Design, New York,
NY, Dorset House
Publishing, 1989

The authors suggest that this text be used as a supplement
to any requirements process that the organization may use,
formal or informal.
It is a very good supplement for Humphrey95, especially
when dealing with project requirements.

Gilb88 Gilb, Tom. Principles of
Software Engineering
Management. Reading,
Mass.: Addison-Wesley,
1988.

This book is designed to help software engineers and
project managers to understand and solve problems
involved in developing complex software systems. It
provides practical guidelines and tools for managing the
technical and organizational aspects of software
engineering projects.
This book has an excellent chapter on software risk
management..

Gilb95 Gilb, Tom, “Reflections on
Testing,” The Computer
Conference Analysis
Newsletter, n365 (June 6,
1995), 7

Glass81 Glass, Robert L., and Ronald
A. Noiseux. Software
Maintenance Guidebook.
Englewood Cliffs, N.J.:
Prentice-Hall. 1981.

This book is useful for background on managing
maintenance.

Glass88 Glass, Robert L. An
Overview o f Technical
Communication for the
Software Engineer.
Curriculum Module SE1-CM-
18-1.0, Software Engineering
Institute, Camegie Mellon
University, Pittsburgh, Pa.,
April 1988.

This module presents the fundamentals of technical
communication that might be most useful to the software
engineer. It discusses both written and oral communication.
Although the information in this module is general, the
bibliography contains helpful references.

GoIey94 Goley, George F., IV, “Rapid
Systems Development,” Data
Based Advisor, vl2, n9
(September 1994), 44-47

Project Demonstrating Excellence 202 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Goodwin90 Goodwin, Mark, Graphical

User Interfaces in C++ &
Object-Oriented
Programming, MIS: Press,
1990

Grady87 Grady, Robert B. and
Deborah L. Caswell,
Software Metrics:
Establishing a Company-
Wide Program, Englewood
Cliffs, NJ, Prentice-Hall,
1994

This authors describes their company’s (Hewlett-Packard)
need for a measurable, controllable software process and of
the professional effort the company mounted to meet that
need. The authors discuss the metrics chosen, the tools used
to collect and digest them, the selling job to get people
involved, the metric forms, the training sequences, the
documentation, and the results and costs.
This is an outstanding text for anyone trying to implement a
organizational process improvement effort in their
organization. This text is one of my most used texts for
metrics and process improvement

Grady92 Grady, Robert B., Practical
Software Metrics fo r Project
Management and Process
Improvement, Englewood
Cliffs, NJ, Prentice-Hall,
1992

The text emphasizes proven practices and results that
include: those software development “rules” that are
supported by measured evidence; how measurements
should be tightly linked to organizational strategies;
development metrics that help project managers; how
metrics are used to achieve continuous process
improvement; what measures are meaningful for a large
organization.
This is an outstanding text for software engineering
practitioners, project managers, and process improvement
managers. This text is one of my most used texts for
metrics and process improvement.

GTWA95 Gold Wing Touring
Association Rider Education
Program Director's Manual,
1995

Hamlet95 Hamlet, Dick, “Testing for
Quality,” The Computer
Conference Analysis
Newsletter, n365 (June 6,
1995), 7

Handy89 Handy, Charles, The Age of
Unreason, Boston, Mass.,
Harvard Business School
Press, 1989

Dr. Handy shows how dramatic changes are transforming
business, education, and the nature of work. This was an
excellent text describing the problems and possible
solutions to organizational change.

Hansen86 Hansen, K. Data Structured
Program Design, Englewood
Cliffs, N.J.: Prentice-Hall,
1986.

The main theme of this book is Orr’s Data Structured
Systems Development (DSSD) method, which is also
compared and contrasted with the related work of Wamier
and Michael Jackson (JSP). The program examples use
COBOL, although a knowledge of this language is
probably not essential to an understanding of the material.
The book contains many examples of the use of
Wamier/Orr diagrams.

Gregory E. Russell 2 0 3 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Harris92 Harris, Steve,

Troubleshooting Local Area
Networks, KCC Blackwell,
1992

Harvey86 Harvey, Katherine E.
Summary o f the SEJ
Workshop on Software
Configuration Management.
CMU/SEJ-86-TR-5,
Software Engineering
Institute, Pittsburgh, Pa.,
Dec. 1986.

This is good reference material for presenting basic
concepts on configuration management.

Hass93 Hass, Glen and Forrest W.
Parkay, Curriculum
Planning: A New Approach,
6th edition, Boston, MA,
Allyn and Bacon, 1993

This present presents the knowledge, performance
competencies, and alternative strategies needed by
curriculum planners and instructors at all levels of
education. The text offers a variety of learning experiences
for learners with wide-ranging interests, learning styles, and
backgrounds.
The text is divided into two parts, part one explores vital
curriculum planning components: values and goals, the four
bases of curriculum, and curriculum criteria, part two
emphasizes application of the skills developed in part one
identifies the many curriculum innovations and trends.

Hatley88 Hatley, Derek J. and Imtiaz
A. Pirbhai, Strategies for
Real-Time System
Specification, Dorset House,
NY, 1988

This is an excellent casebook and practical reference for
modeling the requirements and architecture of real-time and
general systems. It provides guidance for the systems
developer to develop large software-based systems.

Hayes87 Hayes, I, ed. Specification
Case Studies. Englewood
Cliffs, N. J.: Prentice-Hall,
1987.

A collected set of case studies that are all based upon the
use of Z, providing a well-structured introduction to the use
of formal methods. The section on specification of the
UNIX filing system may involve sufficiently familiar
material to provide a good introduction for many students.

Hekmatpour87 Hekmatpour, S. “Experience
with Evolutionary
Prototyping in a Large
Software Project.” ACM
Software Engineering Notes
12, 1 (1987), 38-41.

Describes three alternative approaches to evolving the
development of software systems through prototyping
techniques and tools.

Hetzel88 Hetzel, Bill, The Complete
Guide to Software Testing,
Wellesley, Mass, QED
Information Sciences, Inc.,
1988

Dr. Hetzel discusses the concepts and principles of testing.
Then he presents detailed discussions of testing techniques
using examples, checklists, and case studies based on Dr.
Hetzel’s consulting and management experience. An
excellent text..

Project Demonstrating Excellence 2 0 4 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Hix93 Hix, Deborah and H. Rex

Hartson, Developing User
Interfaces: Ensuring
Usability Through Product &
Process, New York, NY,
John Wiley & Sons, Inc.,
1993

This text provides a hands-on approach to human-computer
interaction design and implementation.
This is a good intermediate text on human-computer
interaction.

Horton94 Horton, William, Designing
and Writing Online
Documentation, 2nd Edition,
New York, NY, John Wiley
& Sons, Inc., 1994

This text is an excellent guide to the art and science of
creating on-line documents and documentation systems. It
covers human-computer interaction and extrapolates a set
of universal principles that can be applied to any form of
on-line documentation.

Hsieh95 Hsieh, David. “Configuration
Management: Common
Object Repository
Environment,” Data
Management Review, April
1995, reprint

Humphrey87 Humphrey, Watts S.
Managing for Innovation:
Leading Technical People.
Englewood Cliffs, N.J.:
Prentice-Hall 1987.

If there is a Mythical Man-Month for managers, this is
probably it. Humphrey has collected his and his IBM
colleagues' collective experiences in leading technical
individuals and teams into this compact readable, and
immediately useful book. It is best to read a chapter at a
time, with some reflection between segments there is just
too much in a typical chapter to absorb it adequately in
conjunction with its neighbors.

Humphrey88 Humphrey, Watts S.
“Characterizing the Software
Process: A Maturity
Framework.” IEEE Softwaie
5,3 (March 1988), 73-79.

Humphrey presents a framework for the evolution of the
software development process.

Humphrey89 Humphrey, Watts S.,
Managing the Software
Process. Reading, Mass.:
Addison-Wesley, 1989.

A genuine handbook for managers. It is very detailed and
complete.

Humphrey95 Humphrey, Watts S., A
Discplined Approach to
Software Engineering, New
York, NY. Addison-Wesley
Publishing Company, 1995

Watts Humphrey scales the methods discussed in
Humphrey89 down to a personal level, helping software
engineers to develop the skills and habits needed to plan,
track, and analyze large, complex projects.
This text should be the software engineer’s number text on
software engineering principles and methods.

Hutch ison88 Hutchison, David, Local
Area Network Architectures,
Addison-Wesley, 1988

Gregory E. Russell 2 0 5 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Ibrahim95 Ibrahim, Rosalind L. and Iraj

Hirmanpour, The Subject
Matter o f Process
Improvement: A Topic and
Reference Source for
Software Engineering
Educators and Trainers,
Pittsburgh, PA: Software
Engineering Institute,
Camegie-Mellon University,
1994

IEEE83 IEEE. IEEE Standard
Glossary o f Software
Engineering Terminology.
New York: IEEE, 1983.
ANSI/IEEE Std 729-1983

Provides definitions for many of the terms used in software
engineering.

IEEE84 IEEE. IEEE Standard for
Software Quality Assurance
Plans. New York: IEEE,
1984. ANSI/ IEEE Std 730-
1984.

IEEE87 IEEE. IEEE Standardfor
Software Project
Management Plans. New
York: IEEE, 1987. IEEE Std
1058.1-1987.

IEEE88 IEEE. IEEE Guide to
Software Configuration
Management. New York:
IEEE, 1988. ANSI/IEEE Std
1042- 1987.

Ingevaldsson86 Ingevaldsson, L. JSP: A
Practical Method o f
Program Design, 2nd Ed.
Bromley, Kent, U. K.:
Chartwell-Bratt Ltd.. 1986.

A practical book that relates JSP concepts to a wider
domain. (The reader is invited to draw structure diagrams to
describe a train, a telephone directory, and other structures).
This book is in a very readable style, and is well-provided
with examples and exercises (and with solutions for the
latter).
A useful book for anyone teaching any details about JSP.

Jackson75 Jackson, M. A. Principles of
Program Design. Orlando,
Fla.: Academic Press, 1975.

Presents a semiformal approach to program design that
maps the syntactic structure of a program's input into a
structure for an algorithm to process that input. This can be
considered as the source book for JSP, and despite the use
of COBOL for the programming examples, it discusses a
lot of important issues.

Project Demonstrating Excellence 2 0 6 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Jackson82 Jackson, J. H., and C. P.

Morgan. Organization
Theory: A Macro Perspective

for Management, 2nd Ed.
Englewood Cliffs, N.J.:
Prentice-Hall, 1982.

A useful book on organization theories.

Jackson83 Jackson, M. A. System
Development. Englewood
Cliffs, N. J.: Prentice-Hall,
1983.

This book contains the original description of JSD. It is
built around three worked examples. Note that
[Cameron83] and [Sutcliffe88] provide descriptions of a
more current form of the JSD method and contain more
manageable examples for students.

Jensen79 Jensen, R. W., and C. C.
Tonies, eds. Software
Engineering. Englewood
Cliffs, N. J.: Prentice-Hall,
1979.

A collection of articles that are primarily oriented toward
management. However, structured program design is
covered.

Jones80 Jones, C. B. Software
Development: A Rigorous
Approach. Englewood Cliffs,
N. J.: Prentice-Hall, 1980.

Presents a formal approach to specification and verification
of programs and to the use of abstract data types.
The material of this book may be difficult for anyone who
lacks the necessary mathematical background or who is
unfamiliar with the type of notation used.

Jones86 Jones, Capers, Programming
Productivity, New York, NY.
McGraw-Hill Book
Company, 1986

Capers Jones summarizes in this text the experience of the
first 30 years of commercial and industrial programming
and to point out both the real progress that has occurred and
the trends that the author speculated were likely to take
place in the beyond 1986.
This text provides a good foundation for the why and how
software metrics came into being and why they are
important now as when the author wrote the text.

Jones91 Jones, Capers, Applied
Software Measurement:
Assuring Productivity and
Quality, New York, NY.
McGraw-Hill Book
Company, 1994

Capers Jones provides a complete guide to the latest
methods for accurately measuring software quality, that
offers a battery of scientific tools for dramatically
improving scheduling, costs, and quality of software
projects. Mr. Jones focuses the text on the use of Function
Points for large-scale statistical analyses.
This is an excellent text for organizational measurement
techniques.
Refer to Humphrey95 for a description of personal software
measurement techniques.

Jones94a Jones, Capers, “Some
Statistics,” The Computer
Conference Analysis
Newsletter, n337 (March 11,
1994), 9

Gregory E. Russell 2 0 7 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Jones94b Jones, Capers, Assessment

and Control o f Software
Risks, Englewood Cliffs, NJ:
Yourdon Press, 1994

Jones95 Jones, Capers, “Hard
Problems of Software
Measurement,” Application
Development Trends, v2, n5
(May 1995), 25-28

Kedzierski84 Kedzierski, B. I.
“Knowledge-Based Project
Management and
Communication Support in a
System Development
Environment.” Proc. 4th.
Jerusalem Conf. Info.
Technology., 1984,444-451.

Describes the development of a knowledge-based approach
to representing software development task chains and
communications between coordinated development agents.
A prototype processing support environment is described,
as is its suggested use.

Kemper94 Kemper, Alfons and Guido
Moerkotte, Object-Oriented
Database Management,
Englewood Cliffs, NJ,
Prentice Hall, 1994

This text provides a comprehensive view of object-oriented
database technology and the current research directions.

Kerin87 Kerin, R. A., and R. A.
Peterson. Strategic
Marketing Problems: Cases
and Comments. 4th Ed.
Boston, Mass.: Allyn &
Bacon, 1987.

This text contains decision making and management case
studies as they apply to marketing.

Kernighan76 Kemighan, B. W., and P.
Plauger. Software Tools.
Reading, Mass.: Addison-
Wesley, 1976.

A popular guide to programming style and to the
organization and design of software tools. Strongly linked
to the UNIX philosophy of providing small, independent
tools and linking these together to produce more powerful
tools tailored for specific purposes.

Kidder81 Kidder, T. The Soul of a New
Machine. New York:
Atlantic Monthly Press,
1981.

This Pulitzer Prize-winning story describes the
development life cycle of a new computing system
(hardware and software) by a major computer vendor,
together with the dilemmas, opportunities, and social
dynamics that shaped its development. Strongly
recommended as one of the few descriptions of the real
organizational complexities surrounding the development
of computing systems.

Klein92 Klein, Mike, Windows
Programmer's Guide to
DLLs and Memory
Management, Sams
Publishing, 1992

Project Demonstrating Excellence 2 0 8 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Kobara91 Kobara, Shiz, Visual Design

with OSF/Motif, Addison-
Wesley, 1991

Kochan89 Kochan, Stephan G. and
Patrick H. Wood (eds.),
UNIX Networking, Hayden
Books, 19989

Korzeniowski95 Korzeniowski, Paul,
“Household Makes a
Mesured Move to
Client/Server,” Application
Development Trends, v2, n8
(August 1995), 57-59

Kupsh93 Kupsh, Joyce, How to Create
High-Impact Business
Presentations, NTC Business
Books, 1993

Lafore9I Lafore, Robert,
Object-Oriented
Programming in Turbo
C++: Mill Valley, CA,
Waite Group Press, 1991

LaMonica95 LaMonica, Martin, “IS
Looks for Process
Management Tools,”
InfoWorld, vl7, n31 (July
31, 1995), 25-26

Lavenberg83 Lavenberg, S. S. Computer
Performance Modeling
Handbook. New York:
Academic Press, 1983

This book is a collection of papers, most by Lavenberg,
covering a number of modeling approaches including
analysis, simulation, and validation of computer
performance models. This is considered by some to be the
reference manual for modeling practitioners who
concentrate on hardware modeling.

Lehman85 Lehman, M. M., and L.
Belady. Program Evolution:
Processes o f Software
Change. New York:
Academic Press, 1985.

Presents a collection of previously published papers that
identify and reiterate the “laws” of large program evolution
as discovered through empirical investigations at IBM and
elsewhere over the preceding 10 year period.
Unfortunately, many of the papers state the same data and
results, and therefore limit the impact of its contribution.

Lehman87 Lehman, M. M. “Process
Models, Process
Programming, Programming
Support.” Proc. 9th. Intern.
Conf. Software Engineering.
IEEE Computer Society,
April 1987, 14-16.

An invited paper that responds to and debates the proposal
by OsterweiI87 for programming the software process. His
critique cites the inherent openness of software
development practices and the limits of being able to
characterize such practices with algorithmic languages.

Gregory E. Russell 2 0 9 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Linger79 Linger, R. C., H. D. Mills,

and B. I. Witt. Structured
Programming: Theory and
Practice. Reading, Mass.:
Addison-Wesley, 1979

Central theme is the design of mathematically correct
structured programs by the use of systematic methods of
program analysis and synthesis.

Lippman89 Lippman, Stanley B„ C++
Primer, Addison-Wesley
Publishing Company, 1989

Liskov86 Liskov B., and J. Guttag.
Abstraction and
Specification in Program
Design. New York:
McGraw-Hill 1986.

Discusses different uses of abstractions, based largely
around the programming language CLU, and with an
emphasis upon the issues of programming-in-the-Iarge.
Primarily concerned with relatively detailed design issues.

Livingston92 Livingston, Brian, Windows
3.1 Secrets, San Mateo, CA,
IDG Books Worldwide, Inc.,
1992

This text describes in detail the information needed to
install, optimize, and maintain Windows and Windows
applications.
A good text on Windows, especially the information that
Microsoft conveniently forgot to include in their Windows
software development kits.

Londeix87 Londeix, Bernard, Cost
Estimation for Software
Development, New York,
NY. Addison-Wesley
Publishing Company, 1987

This text provides a practical guide to modem cost-
estimation techniques. The author describes the step-by-
step estimation process guide, comparison between Putnam
and Boehms approach to cost-estimation, and excellent
cost-estimation exercises.

Loomis95 Loomis, Mary E. S., Object
Databases: The Essentials,
Addison-Wesley Publishing
Company, 1995

This text describes how object databases fit into the
spectrum of today’s database technology offerings. Mary
Loomis discusses the requirements that drive the
development of object databases products, the kinds of
applications that can best benefit from object database
support, the functionality that object databases offer, and
the direction the industry is taking.

Lorentzen95 Lorentzen, Bob, The Glove
Box Guide: Mendocino
Coast, Mendocino, CA:
Bored Feet Publications,
1995

Lorenz94 Lorenz, Mark and Jeff Kid,
Object-Oriented Software
Metrics, Englewood Cliffs,
NJ, Prentice-Hall, 1994

This text identifies a set of meaningful metrics that will
help the software engineer to develop better designs, more
reusable code, and prepare better estimates. The authors
chose metrics that have a high likely hood to identify
anomalies as well as to measure progress.

MAA91 Visualization in Teaching
and Learning Mathematics,
Mathematical Association of
America, 1991

Project Demonstrating Excellence 210 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description

Machiavellil3 Machiavelli, N. The Prince.
Bantam Books, Inc., 1981.
First published in 1513.

This book presents several excellent concepts related to
influencing people in spite of an adverse relationship. It
was written to explain how a prince should control his
principality, but with only a minor change in view point, it
also provides a remarkably incisive commentary on
interpersonal and interorganizational relationships.

Mainwaring77 Mainwaring, William L.,
Exploring the Oregon Coast,
Salem, OR: Westridge Press,
1977

Mann88 Mann, Nancy R. “Why it
Happened in Japan and Not
in the U.S.” Chance: New
Directions for Statistics and
Computing 1,3 (Summer
1988), 8-15.

The story of how W. Edwards Deming's statistical quality-
control methodology came to be embraced in Japan, after it
failed to take hold in the U.S. The crucial factor, Mann
asserts, was the buy-in of Japanese management. The
competitive advantage this gave Japanese industry should
not be lost on American software developers.

Marca88 Marca, D. A., and C. L.
McGowan. SADT:
Structured Analysis and
Design Technique. New
York: McGraw-Hill. 1988.

A detailed description of SADT, which makes use of a
generous supply of illustrations and examples, as well as
providing a number of case studies taken from different
application domains. The large size format used for the
book makes the examples particularly clear and readable.

Martin85 Martin J., and C. McClure.
Diagramming Techniques for
Analysts and Programmers.
Englewood Cliffs, N. J.:
Prentice-Hall, 1985

A useful summary of some major forms of diagrams that
also provides a set of examples for a wide range of
diagrammatic forms.

Martin89 Martin, James, Information
Engineering Book I
Introduction, Englewood
Cliffs, NJ: Prentice-Hall,
1989

Martin93 Martin, James, Principles of
Object-Oriented Analysis
and Design, Englewood
Cliffs, NJ, Prentice Hall,
1993

James Martin provides a complete introduction to object-
oriented (00) analysis and design and how it is being used
to create models for redesigning a business enterprise.
Although the text provides good examples of 0 0 analysis
and design methods, it falls short in describing the
transaction and transformation methods used to transverse
the gap from analysis and design.

May75 May, Rollo, The Courage to
Create, New York, NY:
W.W. Norton, 1975

McCarthy 95 McCarthy, Jim, Dynamics of
Software Development,
Redmond, WA: Microsoft
Press, 1995

The author discusses his techniques for delivering great
software on time. He talks about the strategies and rules of
thumb that worked for him at Microsoft Corporation as the
director for the Microsoft Visual C++ Program
Management Team.
This is an excellent text.

Gregory E. Russell 211 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description

McLachian94 McLachian, Gordon, “The
Laid Plans: Project Planning
Is As Easy As 1....2 ,3,4 ,5 ,”
HP Professional, v8, nl2
(December 1994), 72

Menasce94 Menasce, Daniel A., Virgilio
A. F. Almeida, and Larry W.
Dowdy, Capacity Planning
and Performance Modeling,
Englewood Cliffs. N.J.:
Prentice-Hall. 1994

The authors describe how capacity planning questions can
be answered in a scientific manner. The authors discuss a
methodology for capacity planning, intuitive solutions to
simple performance models, software performance
engineering, and how to calibrate and validate a
performance model.
This is a math extensive text, the reader should have a good
understanding of statistics and quantitative analysis.

Meserve95 Meserve, Jason,
“Consistency: One of Three
Keys For J.P. Morgan Core
Group,” Application
Development Trends, v2, n8
(August 1995), 60-62

Metzger81 Metzger, Phillip W.
Managing a Programming
Project, 2nd Ed. Englewood
Cliffs, N.J.: Prentice-Hall,
1981

Yet another of the ex-IBM managers that grew up with the
software industry (Brooks and Humphrey are two others)
puts pen to paper. Metzger has a very engaging, informal
style. Part one of this book is a travelogue through the
traditional phases of the waterfall life-cycle model, with
instructions as to the role of the manager in each phase. Part
two contains an annotated outline of the key documents
produced at each step. This book serves as a good
introduction to the process of software engineering in
general. However, it is quite spare and should be used in
conjunction with [Metzger87],

Metzger87 Metzger, Phillip W.
Managing Programming
People: A Personal View.
Englewood Cliffs, N.J.:
Prentice-Hall. 1987.

Metzger concentrates on the most important aspect of a
software project the people involved in making the product.
He devotes a chapter to each of the key types of personnel:
analyst, designer, programmer, tester, support staff, and
also the customer. There is a wealth of experience
contained in compact spaces, and the art chosen to illustrate
key points outdoes that of The Mythical Man-Month. The
sections on the specific people can be matched with life
cycle phases in [Metzger81].

Meyer89 Meyer, Bertrand, Object-
oriented Software
Construction, Englewood
Cliffs, NJ, Prentice Hall,
1989

This book reviews both the array of techniques needed to
obtain the full extent of the approach and the design of
object-oriented systems, with particular emphasis on the
design of effective module interfaces.

Project Demonstrating Excellence 212 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Microsoft92 Windows 3.1 Programming

Tools, Redmond, WA.,
Microsoft Press, 1992

This book provides detailed information and instruction for
using built-in software development tools that are part of
the Microsoft Windows software development kit (SDK).
Topics included in the text include: creating and compiling
resources, debugging applications, analyzing data, and
compressing and decompressing data.

Millington81 Millington, D. Systems
Analysis and Design for
Computer Applications. New
York: Halsted Press, 1981.

Mills83 Mills, Harlan D. Software
Productivity. Boston, Mass.:
Little, Brown, 1983.
Reprinted by Dorset House
in 1988.

A collection of Mills’ papers from the late 1960s to the
early 1970s. It is possible to trace his thinking on
programming team organization.

Mills86 Mills, H. D., R. C. Linger,
and A. R. Hevner. Principles
of Information Systems
Analysis and Design.
Orlando, Fla.: Academic
Press, 1986.

This book presents a box structure approach to the design
of information systems, based upon the use of “black box,”
“state machine,” and “clear box” structures. Management
issues involved in the design process are included in the
presentation, although the main emphasis is on the design
transformation techniques involved.

Mills88 Mills, Everald E. Software
Metrics. Curriculum Module
SEI-CM-12-1.1, Software
Engineering Institute,
Carnegie Mellon University,
Pittsburgh, Pa., Dec. 1988.

Effective management of any process requires
quantification, measurement, and modeling. Software
metrics provide a quantitative basis for the development
and validation of models of the software development
process. Metrics can be used to improve software
productivity and quality. This module introduces the most
commonly used software metrics and reviews their use in
constructing models of the software development process.
Although current metrics and models are certainly
inadequate a number of organizations are achieving
promising results through their use. Results should improve
further as we gain additional experience with various
metrics and models.

Mimno95 Mimno, Pieter R., “Team
Leaders: The Move to
Distributed C/S Requires,”
Application Development
Trends, v2, n5 (May 1995),
30-36

Moad94 Moad, Jeff, “After
Reengineering: Taking Care
of Business,” Datamation,
v40, n20 (October 15,1994),
40-43

Gregory E. Russell 2 1 3 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Morell89 Morell, Larry J. Unit Testing

and Analysis. Curriculum
Module SEI-CM-9-1.2,
Software Engineering
Institute, Carnegie Mellon
University, Pittsburgh, Pa.,
April, 1989.

This module examines the techniques, assessment, and
management of unit testing and analysis. Testing and
analysis strategies are categorized according to whether
their coverage goal is functional, structural, error oriented,
or a combination of these. Mastery of the material in this
module allows the software engineer to define, conduct,
and evaluate unit tests and analyses and to assess new
techniques proposed in the literature.

Moriarty94 Moriaty, Terry and Barbara
von Halle, “Barriers and
Bridges,” Database
Programming & Design, v7,
nl2 (December 1994), S43-
47

Morse86 Morse, C. A. “Software
Quality Assurance.”
Measurement and Control 19
(1986), 99-104.

This paper introduces the subject of software quality
assurance to a wider audience of engineers so they may
appreciate why software quality assurance has a place of
importance in the software process and therefore must be
considered seriously for all software projects.

MSF93a Motorcycle Rider Course:
Riding and Street Skills,
Motocycle Safety
Foundation, 1993

MSF93b Experience Rider Course,
Motocycle Safety
Foundation, 1993

Mullin89 Mullin, Mark, Object-
Oriented Program Design
with Examples in C++, New
York, NY. Addison-Wesley
Publishing Company, 1989

Mark Mullin provides a concise guide to the essential
concepts and techniques of object-oriented design. The
author clearly explains the key concepts of object-oriented
programming such as objects, classes, entities, hierarchies,
and inheritance.
This is a good text for a novice object-oriented
programmer.

Murdoch94 Murdoch, John, “Code
Review: What Seperates a
Good App From a Poor
One,” Data Based Advisor,
vl2, nlO (October 1994),
126-133

Murphy94 Murphy, Kevin R. and
Charles O. Davidshofer,
Psychological Testing;
Principles and Applications,
3rd edition: Englewood
Cliffs, NJ: Prentice-Hall,
Inc., 1994

Project Demonstrating Excellence 2 1 4 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Musa87 Musa, John D., Anthony

Iannino, and Kazuhira
Okumoto, Software
Reliability: Measurement,
Prediction, Application, New
York, NY. McGraw-Hill
Book Company, 1987

There are four parts to this text. Part 1 provides an
introductory overview of software reliability measurement.
The second part proceeds to give a practical guide for apply
software reliability measurement in such areas as: system
engineering, software project monitoring, scheduling and
planning, software change management, and evaluation of
software engineering technology. Part three discusses the
underlying theoretical principles and the last part provides
an evaluation of the state of the art and suggestions for
further research.

Myers78 Myers, G. J. Composite
Structure Design. New York:
Van Nostrand, 1978.

A data flow approach to program design similar to
Yourdon79

Myers79 Myers G. J. The Art of
Software Testing. John Wiley
& Sons, 1979.

This is a landmark book on the principles of software
testing. The self-assessment given in the foreword of the
book provides real enlightenment regarding the difficulty of
developing comprehensive
test cases.

Nagler93 Nagler, Eric, Learning C++:
A Hands-On Approach, West
Publishing Company, 1993

Nevin94 Nevin, Howard, “The
Dynamics of Change Aren’t
Always Obvious,”
Government Computer
News, vl3, nl7 (August

Norton92 Norton, Daniel A., Writing
Windows Device Drivers,
New York, NY. Addison-
Wesley Publishing
Company, 1992

This book explains device drivers and how to write them
for the Windows environment. It examines the differences
between DOS and Windows drivers, then details the
different Windows operating modes and the three types of
Windows device drivers, system, printer, and virtual.

OIson93 Olson, Dave, Exploiting
Chaos: Cashing in on the
Realities o f Software
Development, New York,
NY: Van Nostrand Reinhold,
1993

This is a good guide for programmers and programming
managers who want to break free from uncreative software
development procedures. The text uncovers the areas of
order within disorder in programming, and explains how to
use them to make software more productive, reliable, and
responsive to customer needs.

OsterweiI87 Osterweil, L. “Software
Processes are Software Too.”
Proc. 9th. Intern. Conf.
Software Engineering. IEEE
Computer Society, April
1987,2- 13 .

Describes an innovative approach to developing operational
programs that characterize how software development
activities should occur and how tools can be used to support
these activities.

Ould90 Ould, Martyn A., Strategies
fo r Software Engineering:
The Management o f Risk and
Quality, John Wiley & Sons,
1990

Gregory E. Russell 215 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Page-Jones80 Page-Jones, M. The Practical

Guide to Structured Systems
Design. Englewood Cliffs,
N. J.: Yourdon Press, 1980.

Presents the tools of structured analysis and shows how to
use these tools. Defines the activity of design and the
qualities of a good design with respect to partitioning,
coupling, and cohesion. Presents a discussion on transform
and transaction analysis.

Pajerski95 Pajerski, Rose, “Software
Process Improvement,” The
Computer Conference
Analysis Newsletter, n365
(June 6, 1995), 11

Perlman88 Perlman, Gary. User
Interface Development.
Curriculum Module SEI-CM-
17-1.0, Software Engineering
Institute, Carnegie Mellon
University, Pittsburgh, Pa.,
April 1988

This module covers the issues, information sources, and
methods used in the design, implementation, and
evaluation of user interfaces, the parts of software systems
designed to interact with people. User interface design
draws on the experiences of designers, current trends in
input/output technology, cognitive psychology, human
factors (ergonomics) research, guidelines and standards,
and on the feedback from evaluating working systems.
User interface implementation applies modem software
development techniques to building user interfaces. User
interface evaluation can be based on empirical evaluation
of working systems or on the predictive evaluation of
system design specifications.

Peters81 Peters, L. J. Software
Design: Methods and
Techniques. Englewood
Cliffs, N. J.: Yourdon Press,
1981.

The first two chapters of this book give a very good
description of the software design process, viewed as a
problem-solving process. The issues of design
representation are also discussed in some detail. The later
chapters on design methods are now a little dated, in terms
of the selection of methods used.

Peterson87a Peterson, G. E, ed. Object-
Oriented Computing, Volume
I: Concepts. Washington, D.
C.: IEEE Computer Society
Press, 1987.

A useful collection of papers concerned with the
development of object-oriented thinking. It also manages to
strike a balance between the view of Smalltalk-80 and that
of languages such as Ada.

Peterson87b Peterson, G. E, ed. Object-
Oriented Computing, Volume
2: Implementations.
Washington, D. C.: IEEE
Computer Society Press,
1987.

Complements the material of Volume 1 by assembling
papers concerned with making use of object-oriented
thinking in various forms of systems.

Peterson92 Peterson, Mark, Borland
C++ Developer's Bible, Mill
Valley, CA: Waite Group
Press, 1992

PetzoId92 Petzold, Charles,
Programming Windows 3.1,
3rd edition, Redmond, WA.,
Microsoft Press, 1992

A basic text that describes the Windows API and
implementation issues. It also describes the DDE
management library, TrueType fonts, some OLE features.

Project Demonstrating Excellence 216 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Pietrek93 Pietrek, Matt, Windows

Internals: The
Implementation o f the
Windows Operating
Environment, New York,
NY. Addison-Wesley
Publishing Company, 1993

The author describes the internal complexity and power of
Windows in a clear and concise style. He uses pseudocode
to show in detail what happens when a Windows program
executes.
The topics include a walk through a typical Windows
application, memory management, the creation and
destruction of a program dynamic linking, the Windows-
DOS interface, the scheduler, the messaging system,
resource management, and GDI basics.

Pohl89 Pohl, Ira, C++for C
Programmers, Redwood
City, CA:
Benjamin/Cummings
Publishing Co., 1989

Pollack82 Pollack, S. V., “The
Development of Computer
Science,” 1-51. Studies in
Computer Science, Volume
22 of Studies in
Mathematics, Washington,
D.C: The Mathematical
Association of Ameiica,
1982,

Pooch91 Pooch, Udo W.,
Telecommunications and
Networking, CRC Press,
1991

Prata91 Prata, Stephen, The Waite
Group's C++ Primer Plus,
Mill Valley, CA: Waite
Group Press, 1991

Preece93 Preece, Jenny, ed., A Guide
to Usability: Human Factors
in Computing, New York,
NY. Addison-Wesley
Publishing Company, 1993

This text presents a clear, concise account of human factors
in computing and provides an excellent balance between
the technical and psychological issues in human-computer
interaction.
This text is an excellent supplement to Shneiderman92 and
Hix93

Pressman88 Pressman, Roger S. Making
Software Engineering
Happen: A Guide for
Instituting the Technology.
Englewood Cliffs, N.J.:
Prentice-Hall, 1988.

The author of a popular software engineering textbook here
addresses the problem of how to introduce software
engineering techniques and tools into the workplace. In this
guidebook for managers, Pressman introduces and
discusses the “software engineering implementation life
cycle.”

Gregory E. Russell 217 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Pressman92 Pressman, Roger S.,

Software Engineering: A
Practitioner's Approach, 3rd
edition, New York:
McGraw-Hill, 1992

The text is structured in five parts. Part one presents a
thorough treatment of software project management issues.
Part two describes analysis fundamentals and requirements
modeling methods and notation. Part three presents both
conventional and object-oriented design methods. Part four
stresses the activities that are applied to ensure quality
throughout the software engineering process. Part five
discusses the impact of CASE on the software development
process.
A similar text is Sommerville92.

Putnam92 Putnam, Lawrence H., and
Ware Myers, Measures for
Excellence: Reliable
Software on Time, Within
Budget, Englewood Cliffs,
Yourdon Press, 1992

This book provided quantitative software management
methods and advice essential for building healthy software
projects. The authors discussed life-cycle models, cost
estimating, life-cycle management, productivity analysis,
tracking and control.

Quarterman90 Quarterman, John S., The
Matrix: Computer Networks
and Conferencing Systems
Worldwide, Digital Press,
1990

Radice88 Radice, R. A., and R. W.
Philips. Software
Engineering. Englewood
Cliffs, N.J.: Prentice-Hall,
1988.

An industrial approach to software engineering.

Ray93 Ray, Michael and Alan
Rinzler, The New Paradigm
in Business: Emerging
Strategies for Leadership
and Organizational Change,
New York, NY: G.P.
Putnam’s Sons, 1993

Reiss88 Reiss, Levi and Joseph
Radin, X Windows Inside and
Out, McGraw-Hill, 1988

Riehle94 Riehle, Richard, “The Road
Not Taken”, HP
Professional, v8, n4 (April
1994), 56-57

Robertson93 Robertson, Lesley Anne,
Simple Program Design, 2nd
edition, New York, NY,
Boyd & Fraser Publishing
Company, 1993

This is an excellent text for beginner software engineers
and programmers who want to develop good programming
skills for solving common business problems.

Project Demonstrating Excellence 2 1 8 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Rout92 Rout, T.P., “The Culture of

Quality and Software
Engnineering Education”,
S1G Computer Science
Education, ACM Press,
Volume 24, Number 2 (June
1992), 29,31, and 34

Rumbaugh91 Rumbaugh, James and et.al.,
Object-Oriented Modeling
and Design, Englewood
Cliffs. NJ,Prentice-Hall,
1991

This text emphasizes that object-oriented technology is
more than just a way of programming. It applies techniques
to the entire software development cycle. It presents a new
object-oriented software development methodology —
from analysis, through design, to implementation.
This is an excellent text on object-oriented analysis and
design notations and methods. As of now the translation
between analysis and design is very weak. The author is
working with Grady Booch to rectify this weakness.

Sanders95 Sanders, Lawrence G., Data
Modeling, New York, NY,
Boyd & Fraser Publishing
Company, 1995

The author describes how data modeling can be used to
design large and small organizational databases.
This text is an excellent first time book for novice data
modelers.

Santifaller91 Santifaller, Michael, TCP/IP
and NFS: Internetworking in
an UNIX Environment,
Addison-Wesley, 1991

Sarna93 Sama, David E. Y. and
George J. Febish, PC
Magazine Windows Rapid
Application Development,
ZD Press: 1993

Sarna94 Sama, David E. and George
J. Febish, “What Makes a
GUI Work?,” Datamation,
v40, nl4(Juiy 15,1994), 29-
30

Sauer81 Sauer, C. H. and Mani K.
Chandy. Computer Systems
Performance Modeling.
Englewood Cliffs, N.J.:
Prentice-Hall, 1981.

This book is an interesting treatise on performance
modeling. It covers general principles, Markovian and other
queuing models, approximation techniques, simulation,
measurement, and parameter estimation. It contains six
modeling case studies and discusses the management
aspects of modeling projects.

Gregory E. Russell 2 1 9 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Scacchi87 Scacchi, Walt. Models o f

Software Evolution; Life
Cycle and Process.
Curriculum Module SEI-CM-
J0-1.0, Software
Engineering Institute,
Carnegie Mellon University,
Pittsburgh, Pa., Oct. 1987.

This module presents an introduction to models of
software system evolution and their role in structuring
software development. It includes a review of traditional
software lifecycle models as well as software process
models that have been recently proposed. It identifies three
kinds of alternative models of software evolution that
focus attention to either the products, production processes,
or production settings as the major source of influence. It
examines how different software engineering tools and
techniques can support life-cycle or process approaches. It
also identifies techniques for evaluating the practical utility
of a given model of software evolution for development
projects in different kinds of organizational settings.

Schach93 Schach, Stephen R., Software
Engineering, 2nd Edition,
Richard D. Irwin, Inc., 1993

Seaman89 Seaman, Don F. and Robert
A. Fellenz, Effective
Strategies for Teaching
Adults, Merril Publishing
Company, 1989

Sebasta93 Sebasta, Robert W.,
Concepts o f Programming
Languages, 2nd Edition,
Redwood City, CA: The
Benjamin/Cummings
Publishing Company, Inc.,
1993

This test provides a comprehensive, up-to-date presentation
of the principles, paradigms, designs, and implementations
of modem programming languages. This conceptual
perspective prepares the reader to critically evaluate
existing and future languages and their constructs.

SEI-CCM-WS95 Software Engineering
Institute Capability Maturity
Model, version 2.0,
Workshop, February 1995

SEI-RC95 Softwre Engineering Institute
Risk Conference
Proceedings, Software
Engineering Institute,
November 1995

SEI-SPIN95 SEI SPIN Directory Fall
1995, Software Engineering
Institute, 1995

Senge90 Senge, Peter M., The Fifth
Discipline, New York, NY,
Doubleday, 1990

Dr. Senge describes the concepts and principals of a
learning organization. This text identifies organizational
learning disabilities and possible solutions to overcome
them. This text provides the foundation principles and
practices for any organization trying to change to a learning
organization incorporating total quality management
principles.

Project Demonstrating Excellence 220 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Senge94 Senge, Peter M., Richard

Ross, Bryan Smith, Charlotte
Roberts, Art Kleiner, i he
Fifth Discipline Fieldbook,
New York, NY, Doubleday,
1994

This text is a continuation of Dr. Senge’s The Fifth
Discipline. This fieldbook is an pragramtic guide. It shows
how to create an organization of learners by providing
exercises, examples, and checklists. This is a must text for
anyone dealing with organizational restructuring and total
quality management concepts.

Shannon75 Shannon, R. E. Systems
Simulation: The Art and
Science. Englewood Cliffs,
N.J.: Prentice-Hall, l 975.

This book covers the life cycle of system simulation. It
goes from systems investigation through validation and
analysis. It covers management aspects, model translation,
planning and design of experiments. It includes six case
studies in simulation.

Shere88 Shere, K. D. Software
Engineering and
Management. Englewood
Cliffs, N.J.: Prentice-Hall,
1988.

This book is intended for the computer professional who
needs to gain a system-level perspective of software
development. It contains seven chapters on the system
development life cycle, including discussions of risk
management and cost estimation. It uses a case study to
discuss structured design and database design and then
addresses such subjects as quality assurance, capacity
planning, and reliability. It concludes with a “case study of
a systems engineer and integration job.”

Shiller90 Shiller, Larry, Software
Excellence, Englewood
Cliffs. NJ,Yourdon Press.
1990

This book is designed to specifically address and develop
the notion of software excellence and how to achieve it.
The author divided the book into three parts. Part one
provides a solid foundation in the guiding principles of
software development. Part two specifies procedures that a
developer can use right away to achieve software
excellence. Part three describes a set of tools used in the
part two.

Shlaer88 Shlaer, Sally, and Stephen J.
Mellor, Object-Oriented
Systems Analysis: Modeling
the World in Data,
Englewood Cliffs, NJ,
Yourdon Press, 1988

This book lays the groundwork for an object-oriented
approach to systems development through information
modeling. The approach focuses on identification,
formalization, and verification of expert knowledge from
diverse business, engineering, and technical disciplines as a
means of determining the intrinsic information
requirements of the system.

Shneiderman92 Shneiderman, Ben,
Designing the User
Interface: Strategies for
Effective Human-Computer
Interaction, New York, NY.
Addison-Wesley Publishing
Company, 1992

This text provides the most complete and the most current
introduction to user interface design. The author discusses
the underlying issues, principles, and empirical results, and
describes practical guidelines and techniques necessary to
realize an effective design.
This is an advance text on human-computer interaction.

Smith90 Smith, Connie U.,
Performance Engineering of
Software Systems, New
York, NY. Addison-Wesley
Publishing Company, 1990

This text examines the performance implications of
software requirements and design alternatives and provides
a solid basis for assessing performance before coding
begins.

Gregory E. Russell 221 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Smith94 Smith, Dex, “Developing

Online Application Help,”
Hewlett-Packard Journal,
v45, n2 (April 1994), 90-95

Sommervil!e92 Sommerville, Ian, Software
Engineering, 4th edition,
New York, NY. Addison-
Wesley Publishing
Company, 1992

An excellent text that introduces the learner to a spectrum
of state-of-the-art software engineering techniques which
can be applied to practical software projects.
A similar text is Pressman92.

Stallings88 Stallings, William, Data and
Computer Communications,
2nd Edition, MacMillan,
1988

Stevens91 Stevens, Wayne, Software
Design: Concepts and
Methods, Englewood Cliffs.
N.J.: Prentice-Hall. 1991

The author presents an introduction to the most important
software design methods available. He discusses the key
software design methods’ notation and issues of software
design.

Strauss94 Strauss, Susan H. and Robert
G. Ebenau, Software
Inspection Process, New
York, NY. McGraw-Hill
Book Company, 1994

The authors provide a guide that allows software engineers
to catch and resolve problems early in the design and
development phases. They describe a step-by-step overview
of the inspection process by showing how to integrate
inspections into existing development procedures, defining
inspection parameters, manage the inspection process
across the scope of an entire project, select appropriate
inspection data and train personnel in its use, and fine-tune
the inspection process for software, hardware, and
documentation development projects.
This is another key text. This text alone, if successfully
implemented, can increase productivity and reduce costs.

Sutcliffe88 Sutcliffe, A. Jackson System
Development. New York:
Prentice-Hall, 1988..

A clear introduction to the concepts and use of JSD. A
particularly useful feature is the inclusion of two worked
examples at the back of the book.

Symons88 Symons, Charles R.
“Function Point Analysis:
Difficulties and
Improvements.” IEEE Trans.
Software Eng. SE-14,1 (Jan.
1988), 2-11.

The method of Function Point Analysis was developed by
Allan Albrect to help measure the size of a computerized
business information system. Such sizes are needed as a
component of the measurement of productivity in system
development and maintenance activities, and as a
component of estimating the effort needed for such
activities. Close examination of the method shows certain
weaknesses, and the author proposes a partial alternative.
The paper describes the principles of this “Mark II”
approach, the results of some measurements of actual
systems to calibrate the Mark II approach, and conclusions
on the validity and applicability of function point analysis
generally.
This article is excellent for the presentation and contrast of
the two function point methods (Albrecht's and Symons's)

Project Demonstrating Excellence 222 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Tanenbaum88 Tanenbaum, Andrew S.,

Computer Networks, 2nd
Edition, Englewood Cliffs,
NJ: Prentice-Hall, 1988

Thayer88 Thayer, R. H., ed. Tutorial:
Software Engineering
Project Management.
Washington, D.C.: IEEE
Computer Society Press,
1988.

This tutorial contains many of the important papers relevant
to software engineering and project management. Included
are papers on software engineering, project management,
planning, organizing, staffing, directing, and controlling a
software engineering project.

Tomayko87 Tomayko, James E. Software
Configuration Management.
Curriculum Module SEI-CM-
4-1.3, Software Engineering
Institute, Carnegie Mellon
University, Pittsburgh, Pa.,
1987.

Software configuration management encompasses the
disciplines and techniques of initiating, evaluating, and
controlling change to software products during and after
the development process. It emphasizes the importance of
configuration control in managing software production.

Tully84 Tully, C. “Software
Development Models.” Proc.
Software Process Workshop.
IEEE Computer Society,
1984, 37-44.

This paper discusses information systems, and the system
development process, and presents a number of models
both of systems and of system development. It also presents
one of the few descriptions of the incremental release
model of software development practiced by many large
system development organizations.

Walpoie85 Walpole, R. E., and R. H.
Myers. Probability and
Statistics for Engineers and
Scientists, 3rd Ed. New
York: MacMillan, 1985.

The mathematical approach to probability and statistics.

Walsh94 Walsh, T. Joseph,
Operations Management
Decision Support System,
Project Demonstrating
Excellence, The Union
Institute, 1994

This is the contextual piece of Joseph Walsh’s Ph.D.
dissertation (Project Demonstrating Excellence). The
contextual piece is an excellent of a technology PDE, which
are few and far between at The Union Institute.

Warfield85 Warfield, Ron, A Guide to
Crater Lake: The Mountian
That Used To Be, Crater
Lake Natural History
Association, 1995

Warnier80 Warmer, J. D. Logical
Construction o f Programs.
New York: Van Nostrand,
1980..

Presents a semiformal approach to program design that
maps the structure of a program's input into a structure for
an algorithm to process the input.

Gregory E. Russell 2 2 3 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Weinberg71 Weinberg, G. M. The

Psychology o f Computer
Programming. New York:
Van Nostrand, 1971

This book is a classic that looks at the human element of
computer programming. It investigates in detail the
behavior and thought processes of computer programmers
at the time.
This book is still, in part, relevant for today’s computer
programmers. It provides a good foundation for
understanding the computer programmer.

Weinberg86 Weinberg, Gerald M.
Becoming a Technical
Leader. New York: Dorset
House, 1988.

Weinberg presents his “MOI” model of technical leadership
in this “how-to” book. The successful problem-solving
leader, he asserts, has strong skills in three areas:
motivation, organization, and innovation.

Weisbord88 Weisbord, Marvin R.
Productive Workplaces:
Organizing and Managing
for Dignity, Meaning, and
Community. San Francisco:
Jossey-Bass, 1988.

Weisbord reviews the significant movements in
management science and offers his own view of how to
design and manage more productive workplaces that meet
more successfully the needs of both organizations and
employees. The particular significance of this approach for
software managers is that it recognizes the rapid changes
that occur in the modem workplace and incorporates this
reality into its management guidelines.

Weiss94 Weiss, Mark Allen, Data
Structures and Algorithm
Analysis in C++, Redwood
City, CA:
Benjamin/Cummings
Publishing Company, 1994

Whitten95 Whitten, Neal, Managing
Software Development
Projects, 2nd edition. New
York: John Wiley, 1995

This book collects the experience and wisdom of virtually
thousands of people and hundreds of projects and attempts
to present this treasure of information in a format that
allows the learner to learn from the misfortunes and
successes of others.

Wiegers95 Wiegers, Karl, “Improving
Quality with Software
Inspections,” Software
Development, v3, n4 (April
1995), 55-63

Wiener84 Wiener, R. S., and R. F.
Sincovec. Software
Engineering with Modula-2
and Ada. New York: John
Wiley, 1984.

Examines each phase of the software engineering process.
The focus is on object-oriented design, with
implementation in Modula-2 or Ada. Presents a review of
design methods and principles.

Wiener88 Wiener, Richard S. and
Lewis J. Pinson, An
Introduction to
Object-Oriented
Programming and C++,
Addison-Wesley Publishing
Company, 1988

Project Demonstrating Excellence 2 2 4 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Wiener90 Wiener, Richard S. and

Lewis J. Pinson, The C++
Workbook, Addison-Wesley
Publishing Company, 1990

Wilkes95 Wilkes, Maurice V.,
Computing Perspectives, San
Francisco, CA: Morgan
Kaufmann Publishers, Inc.,
1995

Wirfs-Brock90 Wirfs-Brock, Rebecca, Brian
Wilkerson, and Lauren
Wiener, Designing Object-
Oriented Software,
Englewood Cliffs, NJ,
Prentice Hall, 1990

The authors describe the basic principles for object-oriented
software design by providing a coherent model for the
design process, tools, examples, and exercises.
This is a well cited text.

Wozniewicz95 Wozniewicz, Andrew J. and
Namir Shammas, Teach
Yourself Dephi in 21 Days,
Indianapolis, Indiana, Sams
Publishing, 1995

An excellent structured text to leam Windows
programming using the Delphi language within a very short
time.
This text provides information for learning the basics. It
does not make the learner into an expert over night, that
requires a lot of practice.

Yourdon79 Yourdon, E., and L.
Constantine. Structured
Design: Fundamentals o f a
Discipline o f Computer
Program and System Design.
Englewood Cliffs, N. J.:
Prentice-Hall, 1979.

Presents a data flow approach to program design similar to
[Myers79]. Much of this material is an expansion of the
ideas expressed in [Stevens74].

Yourdon85 Yourdon, E. Structured
Walkthroughs, 3rd Ed. New
York: Yourdon Press. 1985.

A very readable book that discusses a particular way of
managing the process of design and assessing the product.
Reviews can be used with all methods, and this book offers
some practical advice about how to organize them.

Yourdon93 Yourdon, Edward, Decline &
Fall o f the American
Programmer, Englewood
Cliffs. NJ,Yourdon Press.
1993

In this text, Edward Yourdon demonstrates how U.S.
software organizations can become world-class shops if
they exploit the key software technologies of the 1990s.
The author discusses how these companies can increase
their productivity and quality if they companies master
these new technologies.
This text is somewhat similar to Humphrey89 and
Humphrey95. It is another “must” text for the enlighten
software engineer.

YourdonInc93 Yourdon Systems Method:
Model-Driven System
Development, Yourdon Inc.,
Englewood Cliffs.
NJ,Yourdon Press. 1993

This text provides the practical means by which systems
can be effectively developed and maintained. It describes
the YOURDON approach to software engineering.
This text is for advanced software engineers.

Gregory E. Russell 2 2 5 Project Demonstrating Excellence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Index Author & Subject Title Description
Zawrotny95 Zawrotny, Stan,

“Demystifying The Black
Art of Project Estimating,”
Application Development
Trends, v2, n7 (July 1995),
36-44

Project Demonstrating Excellence 2 2 6 Gregory E. Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

